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We propose a modification of the generalized gradient vector flow field techniques based on a
continuous force field analysis. At every iteration the generalized gradient vector flow method obtains a
new, improved vector field. However, the numerical procedure always employs the original image to
calculate the gradients used in the source term. The basic idea developed in this paper is to use the
resulting vector field to obtain an improved edge map and use it to calculate a new gradient based
source term. The improved edge map is evaluated by new continuous force field analysis techniques
inspired by a preceding discrete version. The approach leads to a better convergence and better
segmentation accuracy as compared to several conventional gradient vector flow type methods.
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1. Introduction

Among the most promising techniques for extraction of
complex objects from digital images are active contours or
snakes, originally introduced by Kass et al. [1]. Since the seminal
work of Kass and colleagues, techniques based on active contours
have been applied to many object extraction tasks.

In particular, the snakes have been used to locate the object
boundaries in various applications of medical image processing
with a different degree of success. In particular, they have been
successfully applied to segmentation of dangerous tumors in the
images of the human heart, liver, brain, breast, etc. [2-12].

The active contour evolves to minimize the contour energy
that includes the internal energy of the contour and the external
energy of the image (see Section 2 for details). Applying the
variational approach yields internal and external energies asso-
ciated with the corresponding Euler equations. During the
contour deformation process, the internal force maintains
the contour smoothness, while the gradient-based external force
attracts the contour to the desired boundaries in the image. The
deformation finally stops when the snake achieves an energy
minimum (force balance). The image noise can attract the snake
to a local energy minimum, which does not correspond to
the actual object boundaries. Therefore, to reach the desired
boundary, the initial contour should lie close to the object to avoid
these effects.
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With these drawbacks a variety of improvements to the Kass’s
method have been proposed and implemented.

The most important component of the snake techniques is the
gradient based external force, which pushes the snake towards
the object boundary. The gradient created nearby the boundary
edge must be extended so that the snake feels the object even if it
is initialized far from it. This works for both contracting and
growing snakes (balloons or artificially inflated contours)
proposed in [13,14], where edge-based external forces, enhancing
the effect of image edges, have been introduced to overcome the
sensitivity to the initial conditions and the noise.

The so-called T-snakes proposed in [15] and their improve-
ments such as the dual T-snakes [16] based on iterative
re-parameterization of the original contour are able to make the
use of the self-loops. However, the approach allows only “rigid”
deformations limited by the superimposed “simplicial grid”. An
intrinsic internal force that does not depend on contour
parameterization based on regularized contour curvature profile
has been proposed in [17,18].

In [19] a grammatical framework is proposed to model
different local energy models and a set of allowable transitions
between these models. The grammatical encodings are utilized to
represent a priori knowledge about the shape of the object and
the associated signatures in the underlying images.

The sectored snakes proposed in [20] deform the contour with
constraints derived from a priori knowledge of the object shape,
extracted from the training set of images. This helps the snake to
avoid false boundaries and the noise.

Fourier type descriptors have been used in [21] to make the
curve evolve to a prescribed shape defined by a template. The
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prior information is introduced through a set of complete and
locally stable invariants to Euclidean transformations (translation,
rotation and scale factor) computed using the Fourier Transform.

A probabilistic framework for the region based snake
segmentation is introduced in [22]. The observed scene is
composed of the target and the background zone with unknown
intensities. General statistical solutions for distributions from the
exponential family are presented.

In [23,24] region-based image features are combined with the
edge-based features incorporated in the external forces. Starting
from multiple seeds, Zhu and Yuille [25] performs segmentation
of the entire image by iterative boundary deformation and region
merging iteratively. However, Ronfard [23] and Chakraborty et al.
[24] still require the initial contour to be close to the desired
boundary.

A competing approach called the level set method [26] is based
on the ideas proposed by Osher and Sethian [27] to use a model of
propagating liquid interfaces with curvature-dependent speeds.
The interface is a closed, nonintersecting, hyper surface flowing
along its gradient field with a constant speed or a speed that
depends on the curvature. This is modeled by solving a Hamilton-
Jacobi type equation written for a function in which the interface
is a particular level set. A speed term derived from the image is
used to attach the interface to the object boundaries.

The basic difference between these two models is that the
parametric (conventional) models are local methods based on an
energy minimizing procedure guided by external forces that pull
or push the active contours towards features, such as edges in the
image, while the active contours in level set (geometric) models
are regarded as the zero level set of a higher dimensional evolving
function.

The level set method combined with the contour energy
minimization resulted in a variety of the so-called geodesic
deformable models, see, for instance, [28-31].

It has been shown in [28,32] that in this framework the
minimization of the contour energy is equivalent to minimization
of the contour length weighted by an edge detection function in a
Riemannian space.

Siddiqi et al. [29] incorporate an area function and the edge
function into the length minimization framework to strengthen
the contour attracting force.

The minimum description length approach proposed in [33] is
based on a deformable partition developed for speckled image
composed of a number of homogeneous regions.

Rochery et al. [34] propose a parametric model for higher-order
active contours, in particular, quadratic snakes, for extraction of
linear structures like roads. The idea is to use a quadratic
formulation of the contour’s geometric energy to encourage anti-
parallel tangents on opposite sides of a road and parallel tangents
along the same side of a road. These priors increase the final
contour’s robustness to partial occlusions, decrease the likelihood of
false detections in regions not shaped like roads, and help to prevent
self-looping, since different segments of a contour with anti-parallel
tangents repel each other in the absence of image forces.

However, the level set representation makes it difficult to
impose arbitrary geometric or topological constraints on the
evolving contour via the higher dimensional hyper surface [15].
Besides, the level set models may generate shapes having
inconsistent topology with respect to the actual object, when
applied to noisy images characterized by large boundary gaps [35]
requiring exhaustive optimization to accomplish reasonable
run times.

Li et al. [36], in reference to the problem of topological
adaptation and computational complexity, write “in light of the

. inherent weaknesses of geometric active contour models, it is
worthwhile to seek solutions within the parametric model realm”.

As far as the conventional snake models are concerned, two
major modifications must be mentioned: the balloon snakes and
the distance snakes.

The balloon snake [13] enables the initial contour to be
initialized far from the desired object by adding a constant force,
in the external force, to inflate the contour’s growth.

The external force field for the distance snake [14] is
constructed as the negative of the external energy gradient,
which is the distance from each point to its closest edge points in
the image. This external energy generated large magnitudes of the
external force everywhere in the image, providing a large capture
range. Consequently, the initial contour can be located far away
from the desired boundary if there are no spurious edges along
the way.

Further improvements lie along the lines of processing the
underlying vector field rather than modifying the snake model
itself. A number of popular codes are based on a gradient vector
flow (GVF) method proposed by Xu and Prince [37,38]. A “raw”
gradient vector field derived from the image edges is replaced by
a vector field that minimizes a certain variational functional. The
functional is designed to extend the large gradients far from the
boundary, smooth the gradients caused by noise and speckles
while keeping gradients attached to strong edges. The corre-
sponding Euler equations represented by linear elliptic PDEs are
solved numerically. The PDEs can be also interpreted as the steady
state representation of a diffusion process with constant diffusion
coefficients.

The generalized gradient vector flow field (GGVF) [39] extends
GVF by introducing an analogy with non-uniform diffusion. The
GGVF is defined as a steady state solution of a parabolic equation
with the elliptic terms and the source term similar to the GVF
model. However, the GGVF governing equation employs space
varying diffusion, which provides better segmentation accuracy
and a larger capture range. Some variations of these ideas are a
multidirectional GGVF [40] and a nonlinear diffusion method [41].

GGVF endowed with an appropriate noise elimination remains
one of the most popular choices. The GGVF-preprocessed images
often allow the snakes to avoid gradients produced by the
speckles and the tissue-related edges. However, when the noise
related gradients are comparable with the boundary gradients,
the diffusion smoothes the false and the true contour points
equally. The smoothing after a large number of time steps
(iterations) may change the direction of vectors pointing
(correctly) towards each other at the true boundary. Although
on average GGVF produces a smoother vector field it may also
lead to undesirable effects nearby concave boundaries. Besides it
may generate such unwanted configurations as the attracting or
the repelling stars.

So far the efforts in improving the GGVF method have been
focused on appropriate coefficients of diffusion designed to
extend the large gradients and remove false boundaries around
artifacts. That dual task makes it hard to set up appropriate
coefficients for an arbitrary vector field. Theoretically, the
iterations should be interrupted when the numerical method
converges. However, our experience with US images shows that
the result might be “too smooth”, so that a part of the object
boundary is lost. Therefore, it is often practical to interrupt the
iterations before they converge entirely and apply the snake to
the resulting vector field. This works well for a series of images
with similar properties. However, a new series of images often
requires a new setup.

In this paper, we propose a special treatment of the source
term of the GGVF equations to improve the accuracy and
convergence of the snake subjected to the resulting vector field.
Our modification uses intermediate vector fields obtained during
the numerical iterations to construct an improved edge map.
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The improved edge map is converted back into a new gradient
field used in the source term. Consequently, as opposed to the
conventional GGVF, where this term is always a function of
the original gradient field, our source term is derived from the
improved edge map obtained using the numerical solution from a
previous iteration.

To be mathematically precise, instead of a single gradient
vector field, we consider a sequence of vector fields, where each
field derived from the solution at the preceding time step. We
demonstrate that our approach provides better convergence and
better segmentation accuracy.

The improved vector field is generated from an edge map
obtained by a new continuous orientation field analysis inspired
by the discrete force field analysis (DOFFA) by Hou and Han [42]
presented. DOFFA analyzes relative directions of the gradient field
vectors in a 3 x 3 sliding window to eliminate false contour points
produced by the noise.

Our continuous orientation force field analysis (COFFA) is based
on a numerical measure of a strong edge, applied in a 2x2
window, being rotated around a particular point. This part of the
algorithm is similar to oriented filtering (the oriented Gabor filter,
the oriented LoG filter, etc.). However, the proposed method
differs from the conventional filters. In fact, it is not a filter at all.
The COFFA produces a mapping ¢(601,0,)—[0,255], where 64,0, are
the positive directions of the gradient vector flow in the opposite
nodes of the sample window and ¢ is a measure of how close
those directions are to being anti-parallel. Furthermore, ¢(61,0,)
is considered as a gray level of a new improved image and a new
edge map is generated. The new image can be further improved
by noise elimination, smoothing, etc. before the edge map is
obtained.

The approach has been tested using synthetic low contrast
images. It offers a simple computational scheme and leads to a
higher segmentation accuracy with reference to the conventional
generalized gradient flow method, the balloon snake and the
distance snake method. Our numerical experiments on numerous
images show similar or better accuracy but at the same time
much less sensitivity to the snake controlling parameters and the
initial position of the contour as compared to the GGVF snakes,
balloon snakes and the distance snakes. Finally, our numerical
experiments with medical ultrasound breast images show that
the proposed method is more appropriate than the above
mentioned methods as applied to segmentation of the breast
tumors.

2. Gradient vector flow snakes

An active contour or snake parametrically defined as
X(s) = (x(5),y(5)), s €[0,1] is a curve that evolves inside the image
domain so that it attaches itself to the desired object.
The evolution of the snake is governed by Euler equations
corresponding to an energy functional defined by

-1
E= 1 / <a
2Jo0

The minimum of the functional is supposed to be a curve that
approximates a boundary of the object of interest. Although this
claim has not been proven theoretically for realistic assumptions
such as the presence of noise, false objects, speckles, low contrast
areas, etc., a strong rationale behind it is the variational func-
tional (1).

The first term establishes an equidistribution of points along
the resulting curve whereas the second term ensures against large
curvatures. The weighting parameters a and b are to control the
snake’s tension and rigidity. Finally, E..; is the external energy
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that pulls the snake towards the desired object boundaries. The
simplest choice of E.,; is a magnitude of the gradient of the gray
level subjected to a Gaussian filtering. However this option is
rarely acceptable since it provides a very small capture range and
is sensitive to the noise. Conventional smoothers such as the
Laplacian applied to the gradient fields may remove some noise,
but they also may destroy the true boundary. In particular,
ultrasound (US) images of the breast tumors could be very noisy
with speckles and tissue related textures obstructing the actual
tumor. Consequently, E.,, does not perform well on them. In
particular, the snakes are displaying poor convergence into the
concavities of the boundary due to the small capture range.

A very popular extension of the gradient field approach is the
so-called gradient vector flow (GVF) originally proposed by Xu
and Prince [37,38]. The technique replaces a “raw” gradient vector
field derived from the image edges by a vector field which
minimizes a certain functional which extends the large gradients
far from the boundary and smoothes the gradients caused by
noise. The GVF is a solution of a linear elliptic equation given by

UV2V—(V=Vf)Vf? =0, @)

where Vfis the gradient field derived from the edge map of the
image. Eq. (2) is the Euler equation for the following functional:

M(/‘i/~(uf+u§+v§+v§)dx dy+./l/'|Vf\2(Vfo)2 dxdy. 3

The first integral produces a smoothly varying vector field
V=(u(x,y),v(x,y)), while the second integral encourages the
vector field to approach Vf where |Vf] is large. Furthermore,
Eq. (2) is solved by treating V as a function of a pseudo-time and
by performing numerical iterations with regard to the pseudo-
time as follows:

VIl S VR T (VA (V= V) VR, @

where n is the iteration number and 7’ is the iteration parameter
(a step along the pseudo-time). Note that, iterations (4) can be
interpreted as solving numerically a heat equation given by

ov

o =HVV—(V=VOIVS?. (5)
However, the uniform diffusion u often produces excessive

smoothing. Therefore, Xu and Prince [39] extended the GVF

technique by introducing spatially varying coefficients to decrease

the smoothing effect, namely,

oV

2t~V V=h(Vf)(Vf~V)=0. ©)
The improved version of the GVF is called the generalized

gradient vector flow (GGVF). The weighting functions g and h

depend on the gradient of the edge map so that in the proximity

of large gradients g gets smaller whereas h becomes larger. In [39]

the following weighting functions have been proposed

g(Vf)=e VIO h(Vf]) = 1-g(Vf)), 7

where K is a calibration parameter.
Note that parabolic equations (5) and (6) require boundary
conditions and an initial condition given by V(x,y,0) = Vf(x,y).
An obvious choice is the Neumann boundary condition

where I’ is the boundary of the image rectangular region and N is
the outward normal (some care must be taken at the corners of
the rectangle). In the framework of the heat equation analogy it
means that the “flux of V’ through the boundary is constant along
the normal. Furthermore, the Dirichlet boundary condition

Vip=Vr
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may have undesirable effects on the solution. Finally, the Robin
(or the third type) boundary condition is hard to interpret in the
GVF sense.

As mentioned above the GVF produced by iterations (4) may
be “under-iterated” when the gradients are not extended far
enough from the actual boundary of the object or “over-iterated”
when the true boundary is partially destroyed by an excessive
smoothing.

The smoothing effect depends on the diffusion coefficient u
(or K in case of (7)) and the iteration step 7'. The solution may be
affected by the numerical diffusion as well (a question that has
been never discussed with regard to the GVF models). If a
conventional stopping criterion based on the proximity to the
steady state solution produces an ‘“over-smoothed” solution,
the user must modify the diffusion coefficient or interrupt the
iterations earlier. However, interrupting the iterations too early
may lead to false boundaries and artifacts.

Consider an introductory example. A one-dimensional version
of (6) is given by

v 2V

at —g(vf)m +h(Vf)(V-Vf)=0,

dv dv

a(o.f) = 0.5(1.0 =0, 3)

V(x,0) = Vf, where V=V(x,t), 0 <x < 1.
In the one-dimensional case Vf = (df(x)/dx).
Consider a GVF characterized by g=u, h=1 with Vf given by

Vf = 1.2(0.4—x)e~2500¢-04” | (0 6_x)e~2500x-06" |0 25in(100x).
9

The curve emulates a 1D “object” placed between 0.4 and 0.6
characterized by a sharp change of Vf from positive to negative at

the object boundary (see also Fig. 1(a)). The oscillating term
0.2 sin(100x) imitates the “noise”. Fig. 1(b), (c) and (d) depicts the
solutions of (8) and (9) with the Neumann boundary condition for
various diffusion coefficients.

Clearly, ©=0.0001 (Fig. 1(b)) is too small. Consequently, the
noise generates vector field artifacts, which may attract the snake
to a false boundary. Furthermore ¢1=0.001 (Fig. 1(c)) generates an
acceptable solution. The gradient has been extended enough so
that even if the snake is initialized far from the object, it still will
be attracted. Finally, ©=0.05 (Fig. 1(d)) produces an “over-
smoothed” solution. The object virtually disappears as the result
of an excessive diffusion. Therefore, such p is totally unacceptable.

Space varying coefficients (7) introduced by GGVF offer
another way to control the vector field. The GGVF is illustrated
by numerical solutions of (8) and (9) with g(Vf)=e IV/F/K,
h(Vf)=1-g(Vf) for K=0.01, 0.3 and 0.1. Clearly, the three
outcomes considered above are still possible. Small diffusion
induced by K=0.01 (Fig. 2(a)) creates artifacts, whereas large
K=0.3 destroys the object (Fig. 2(b)). However, an appropriate
diffusion K=0.1 generates a good vector field (Fig. 2(c)) where the
noisy parts have been eliminated while the large edges remain
intact and have been extended far from the object.

However, the result in figure (b) can be improved if the original
gradient field Vf is replaced by a modified gradient Vf; which
uses solutions obtained at previous time steps. For instance, the
solution depicted in figure (d) has been obtained using in (8) and
(9) a sequence of gradient vector flow vectors given by

o Vf ift=o,
fsx) = Vx,t—s) ift>0, (10)

where s is the delay.

a b
1 0.6 3
0.4 ]
05 :
0.2 ]
o
0.2 ]
05 ]
047
.1 T T -06 : T T T T T T T T T T T T T T T T T T T T T T T T
0 02 0.4 06 0.8 1 0 02 0.4 06 08 1
c d
] 0.008
0.04 |
002 ] 0.004 ;
0 \/A 0
0.02 ] -0.004 1
0,04 ; 0,008 ]
0 0.2 0.4 06 08 1 0 02 0.4 06 08 1

Fig. 1. 1D simulations of the GVF: (a) the gradient curve, (b), (c) and (d) solutions of equation (8) with ©£=0.0001, 0.001 and 0.05.
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Fig. 2. 1D simulations of the GGVF: (a) small diffusion, (b) large diffusion, (c) appropriate diffusion and (d) modified GGVF with large diffusion.

Note, that introducing (10) replaces linear boundary value
problem (8) and (9) by a nonlinear one; however, in many cases it
improves the convergence and the subsequent segmentation
accuracy.

Generalization of these techniques to 2D images is not
straightforward. Therefore, the next section introduces contin-
uous orientation force field (COFFA) analysis techniques and its
use in the framework of GGVF.

3. Continuous orientation force field analysis

The main idea of the discrete orientation force field analysis
(DOFFA) proposed by Hou and Han [42] is that the true boundary
vectors must face each other along a certain direction. Therefore,
DOFFA introduces a 3 x 3 sampling window around the candidate
boundary point and analyses the directions of the vector field in
this window. This procedure is illustrated in Fig. 3.

Positions (1)-(4) and sixteen positions (5)-(8) including
rotations and symmetry in Fig. 3 constitute the basic configura-
tion of DOFFA. However, DOFFA introduces many other positions
such as the broken point (9) and (10) and others. It is not clear
whether the set of positions is complete. Of course, for the real
image the vectors are not precisely anti-parallel. Therefore, the
procedure is based on a certain threshold which is often hard to
define. Consider Fig. 3(11). When the vectors are positioned inside
sectors A and B, respectively, they are taken by DOFFA as anti-
parallel; however, when at least one vector is outside the
prescribed sector, the decision reverses. Clearly, the threshold
for such binary assignment is not easy to find. For instance, when
the boundary is noisy, the vectors may considerably deviate from
the standard anti-parallel positions. Besides, in the case of an

iterative use of GGVF the threshold may create divergence since
numerical methods for PDE in general do not perform well when
some terms are not smooth (switch between different states).

In this paper, we modify and extend the DOFFA-techniques as
follows. In order to decrease the number of vectors to compare we
employ a 2 x 2 rotating window (see Fig. 7(a)). The smaller size is
compensated for by rotations, which make it possible to
accurately capture the directions of the vector field around the
candidate point. Observe that DOFFA is very hard to extend to
larger windows. Even for a window 5 x5 the number of
configurations indicating a possible boundary is hard to derive
and interpret. As opposed to that, our method applies to an
arbitrary window size.

The most important difference though is a continuous measure
®(04,02) employed instead of the binary rules of DOFFA. In other
words, instead of deciding whether the vectors are anti-parallel,
we introduce a measure that evaluates a deviation from an ideal
anti-parallel position. The measure is then used to generate a
score vector.

For each orientation of the window the vector field is first
interpolated into the corners of the window (Fig. 7(b)). Next,
®(01,02) measures the deviation of the vectors at the two
opposing corners from the direction corresponding to the
orientation of the window. The closer the two vectors are to the
prescribed direction, the greater is ¢(04,0>).

The maximum response ¢(604,02) shows how close to the anti-
parallel position the vector field is in the locality of the candidate
boundary point. In order to construct the membership function
®(01,02) we use simple two dimensional interpolation techniques
with a few control points. The measure @(04,02):([0,27] x
[0,27])—~[0,1] is first constructed on a triangle {(0,(7t/2)),((7t/2),
(m/2)),((m/2),m)} using interpolating points at the corners and in
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Fig. 3. Basic vector configurations for the discrete orientation force field analysis (DOFFA).
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Fig. 4. The “basic” triangle to define ¢(0;,0,), the ¢-values are indicated by the
frames.
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Fig. 5. (a)-(f) The standard positions.

the middle of each side of the triangle (Fig. 4). The following
conditions at the interpolating points are used:

3 3
0O.m=1,0¢(3.7)=0, w(%,{) — B, w(va)

o =00(3%) =

where « and S are the design values (see Fig. 5(a)-(f),
respectively).

Suppose that ¢(0,(37/4)) = o« = 0.5 (Fig. 5(d)). It means that the
measure of position (d), deviating from the ideal position by %, is
50% of what we assign in the ideal case when the deviation is zero.

Furthermore, the six positions define a quadratic polynomial
given by

(p(01.02) = (110%4—(120102 +a30§+a401 +as0,+ag. a1

0, %
o Nz

The “basic” triangle

Fig. 6. The membership function (10) extended to the entire domain
[0,27] x [0,27].

il T
NI
i — -

o>+, . . ||

‘Pz(ex-e:)

Fig. 7. (a) The 2 x 2 window and (b) the rotating 2 x 2 window.

Once coefficients a; are evaluated from (11), @(64,0,) is
extended to [0,27] x [0,27t] symmetrically as shown in Fig. 6,
thus becoming a piecewise quadratic function.

Note, that if «=/=1/2, then ¢(0,,0,) becomes a bilinear
function given by (1—(2/m)01)(1—(2/m)0,). Furthermore, ¢(01,05)
applies to rotating window W, (Fig. 7) to produce a sequence of
two dimensional score vectors s,=(¢1,¢2),, where 7y is the
rotation angle.

The vectors are normalized as follows: $; new = (s,/(max|s,|)).
We assume that the true contour points form large clusters
characterized by [s,| > 1—0, where 6 is an appropriate threshold.
Besides the true boundary points must belong to relatively large
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continuous segments, whereas the false contour points belong to
short segments. Consequently, appropriate edge detection
methods such as [43-45] can be applied.

Finally, mapping |s,| linearly onto [0,255] for every pixel
constructs a new gray level image. The image is processed further
and a new gradient field is derived from that image again.

The proposed procedure can be generalized by considering an
arbitrary or varying number of pairs of points defined along the
opposite sides of the sampling window. The window
may also have a varying width to height ratio. The proposed
algorithm could be also combined with the linear phase portrait
analysis (see, for instance, [46]) or even nonlinear phase portrait
[47,48].

4. Iterative algorithm

As mentioned in the introduction, GVF as well as GGVF may be
under-smoothed when the gradients are not extended far enough
from the actual boundary or over-smoothed, when the true
boundary is partially or even entirely destroyed by smoothing.

We will prove experimentally that the convergence to a “good”
solution can be improved if the “raw” gradient field Vf in
equation (5) is replaced by Vf’ where f’ is an adaptive edge map
obtained by COFFA.

The algorithm consists of the following steps:

1. Apply the GGVF to the raw gradient field Vf to obtain
V(xy)=(u(xy)v(x.y)).

2. Apply COFFA to the resulting V(x,y) to obtain the score vector
s(xy)=(Q1,92). y

3. Convert s(x,y) into a new gray level image f(x,y).

4. Threshold the gray level image to obtain a COFFA image f'(x.y)
(the adaptive edge map).

5. Calculate the gradient field of the COFFA image Vf'(x,y).

6. Replace the raw gradient field by the new gradient field
obtained and use it for the next series of iterations for
numerical solution of Eq. (6).

. Check for convergence and go to 2 if necessary.

8. Run the snake on the final COFFA-GGVF.

~

Step 4 requires some comments. The image is thresholded
based on the magnitude of the gradient and stability of the edge. If
f>T; then the gray level at that point is incremented; if f<T,,
then it is decremented. Finally, if T; > f> T>, the decision is made
based on the edge stability, namely, if [f—f| <&, where ¢ is a
prescribed tolerance (the edge is stable), then it is incremented,
otherwise it is decremented.

Observe that the snake can also be evolved within the
COFFA-GGVF iterations. In many cases this approach leads to
impressive results. However, a correct combination of the
evolution of the vector field and the snake is still an open
problem. Note that evaluation of the COFFA image for every
iteration slows down the algorithm. Besides it may lead to
divergence of the numerical solution. Therefore, similar to the
delayed source term in (8) and (9) we calculate the new gradient
field at each n'th iteration, where n’ is the calibration parameter.

The entire list of the algorithm’s parameters and their
numerical values producing appropriate results for our series of
the medical US images are given below:

1) The diffusion coefficient (GGVF) K ~ 0.1.

2) The time step for numerical solution of the parabolic equation
(5) t<10.

3) The design parameters for the membership function (10):
«=0.5, f=0.5.

4) The upper and lower threshold for creating the gray level
COFFA image can be found by the Otsu algorithm [50].

Note that the problem of finding thresholds T;,T, is in
fact a problem of finding clearly strong (f> T;) and clearly weak
(f<T,) edges. Pixels, characterized by T;>f>T,, are treated
using the notion of edge stability. The idea is similar to
Lindeberg’s space-scale edge detection [51]. The stronger the
edge, the longer it survives under smoothing effects of the
diffusion. The similarity of the space-scale Gaussian blurring and
diffusion produced by the GFV is also transparent, since a
Gaussian is a solution of Eq. (5) if the term (V—Vf)|Vf]? is
neglected.

As far as the thresholds T;,T, are concerned, they can be found
by histogram based methods such as the Otsu algorithm or even
adjusted manually. Conservative estimates do not significantly
affect the algorithm, since the missing strong edges will be later
discovered by the stability criteria. However, it is our experience
that the Otsu method usually provides a relatively robust upper
and lower threshold.

Furthermore, we present numerical experiments performed on
a series of synthetic images as well as on actual digital US images
of breast tumors.

5. Numerical experiments: synthetic images

The accuracy is defined as a percentage of true positive points
with reference to the true boundary. A contour point is considered
to be a true positive point if a point in the ground truth image
belongs to the true contour.

The accuracy is also evaluated in terms of the generic
Hausdorff distance given by

disty(X1,X) = max{maxmin||a—b||,maxmin||la—b||}, 12
H(X1,X2) {aEX1beX2|| IlbeX2a6X1|| [} 12)

where | - I denotes the Euclidian distance, X; the resulting contour
and X, the ground truth. In order to obtain a dimensionless
estimate, the Hausdorff distance is divided by the length of the
true contour Ly, as follows:

disty(X1,X2)
L,

Measure (13) is a ratio of the maximum distance between the
snake and the true contour and the length of the true contour. For
instance, the difference in 10 pixels is significant if the perimeter
of the object is 100 pixels (a small object) but might not be that
important if the length is 10000 pixels (a large object).
Furthermore, the advantage of (12) and (13) is that it is a distance
in a mathematical sense, whereas the number of true positives is
not. A combination of the true positives and the Hausdorff
distance is a good measure of the segmentation quality. A larger
degree of overlap of the boundaries (true positives) signifies a
better segmentation. On the other hand, if the number of true
positives is equal to zero, the boundaries could still be close, say at
the distance of one pixel. In that case the Hausdorff distance
shows that the quality of segmentation is still relatively good. In
turn, a set of boundaries dissimilar only over small portions may
have the same Hausdorff distance as that of the globally dissimilar
set of boundaries. However, if the boundaries are globally
dissimilar we may expect a very low number of true positives.
Finally, if the number of true positives is high and the Hausdorff
distance is low, the quality of segmentation is very likely to be
good.

We also evaluate the robustness of the method by its
numerical convergence.

diStH,norm(Xl vX2) = (1 3)
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Let T, be the number of true positives and let X, be the snake
contour at iteration n. If for some n and kq

d |diStH,norm(Xn+k,Xn)_diStH,norm(Xn+1,Xn)|
disty norm Xn+1,Xn)
< ey, Vk <k, (14)

|Tn+k*Tn|<8T an 100

we will say that the method converges. Here, ko is the number of
iterations during which the accuracy estimates are stable and ¢r,
¢y the required tolerance. Note, that although definition (14) is
mathematically correct, an appropriate criteria of convergence of
the GGVF snakes is still an open problem [52].

Example 1. Simple geometric figures. Gaussian noise. Large
diffusion.

The snake is initialized around a triangle in the center of an
image in Fig. 8 subjected to a 2% Gaussian noise. Fig. 8(b) shows
that the snake using COFFA-GGVF is able to attach itself to the
boundary of the object. However, the same diffusion coefficient
employed by a conventional GGVF leads to an unacceptable result
(Fig. 8(a)).

Table 1 compares the two methods with varying K and the
distance snake (DS) method. The two numbers in the cells of
the table correspond to the percentage of the true positives and

S
-

Fig. 8. Snake based segmentation using (a) the conventional GGVF, (b) the COFFA-GGVF, K=0.4 (c) the distance snake (DS), T=0.313, (d) the gradient vector field
corresponding to the distance snake method and (e) gradient vector field obtained by COFFA-GGVF.

Table 1

Accuracy (percentage of true positives and the Hausdorff distance) of GGVF, COFFA-GGVF and DS. 2% noise. Image in Fig. 8.

Method/iterations GGVF COFFA-GGVF DS
K K T=0.313
0.01 0.1 0.4 0.01 0.1 0.4
10 79.613 78.847 76.820 79.808 79.817 79.458 89.287
0.030 0.030 0.030 0.029 0.029 0.029
30 88.293 85.222 82.123 89.125 89.176 88.493 0.004
0.005 0.008 0.013 0.004 0.004 0.006
50 88.711 86.258 69.755 89.125 89.176 87.725
0.005 0.008 0.034 0.004 0.004 0.006
70 88.755 85.641 69.755 89.125 89.176 87.725
0.005 0.009 0.034 0.004 0.004 0.006
90 88.705 74.609 54.725 89.125 89.176 87.725
0.005 0.035 0.034 0.004 0.004 0.006
110 88.421 74.184 54.095 89.125 89.176 87.362
0.005 0.035 0.034 0.004 0.004 0.006
Converg. Yes No No Yes Yes Yes
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the normalized Hausdorff distance (13). In what follows our
convergence criterion (14) employs k=20, er=¢y=0.25%. In
other words the difference in the number of true positives and
between the consecutive snake contours in terms of the distance
(13) must not be larger than 0.25% during at least 20 iterations.
Moreover, we require that the result produces the best accuracy
for both: the true positives and the Hausdorff distance during the
entire iteration process. For example, if the best snake during the
iterations consists of 95% true positives but the iterations
converge in the sense (14) to a snake having 90% true positives,
we consider this a divergence because the snake was in a better
position but failed to converge to it.

adjusted threshold, whereas COFFA-GGVF works fine with Otsu
thresholding.

Furthermore, Table 2 shows that COFFA-GGVF is more
resistant to noise than the classic GGVF. For instance, the
performance of GGVF for K=0.01 dropped by 10% with the
increase of noise by 1.5% whereas the performance of COFFA-
GGVF dropped only by 5%.

Table 4
Accuracy for different incorporated edge detection methods. Image in Fig. 9(a).

Clearly, COFFA-GGVF displays a better accuracy and a larger Method GGVF COFFA-GGVF DS
range of acceptable diffusion cogfﬁaents, vyhereas GGVF diverges S 77.667 83.837 66.932
for K=0.1 and K=0.4. The DS displays a slightly better accuracy; 0.018 0.007 0.076
however, the resulting v r fiel ined with hreshol
:9 ede , the result g ector field obta. ed th Otsu t IJelsl old _—— 77812 84511 67.416
[49] does not contain vectors attracting to the gray balls at 0018 0.006 0077
the corners of the picture, whereas COFFA-GGVF still contains c 28019 84610 68213
the objects. Our forthcoming examples show that the DS does ey WG 605 e
not perform better on complex objects even with a manually
Table 2
Accuracy: GGVF, COFFA-GGVF and DS. 3.5% noise. Image in Fig. 8; 110 iterations.

Method/estimate GGVF COFFA-GGVF DS snake
K K T=0.302
0.01 0.1 0.4 0.01 0.1 0.4
The best 80.1310 86.3320 81.0440 86.7270 86.1270 85.8040 87.6740
0.0319 0.0088 0.0130 0.0088 0.0088 0.0088 0.0088
The worst 67.2920 64.6090 47.1660 79.3830 79.4690 78.9000
0.0331 0.0299 0.0381 0.0245 0.0381 0.0312
Converg. No No No Yes Yes Yes

Fig. 9. (a) The ground truth, (b) conventional GGVF (110 iterations), (c) COFFA-GGVF(110 iterations), K=0.01 and (d) distance snake, T=0.1.

Table 3

Accuracy: GGVF, COFFA-GGVF and DS, 2.5% noise. Image in Fig. 9(a); 150 iterations; Prewitt edge detection, “Yes*” denotes convergence to a reasonably good but not the

best solution.

GGVF COFFA-GGVF DS
K K T=0.1
0.01 0.1 0.4 0.01 0.1 0.4
The best 65.751 77.667 76.019 81.102 83.837 82.859 66.932
0.077 0.018 0.018 0.008 0.007 0.010 0.076
The worst 62.543 68.436 53.283 77.047 79.976 80.522
0.077 0.028 0.028 0.069 0.018 0.018
Converg. Yes No No Yes* Yes Yes
80.727

0.007
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Note that Table 2 and all the forthcoming tables show only the
best and the worst results in each category and whether the
method converges numerically in the sense (14) to the best value.

Example 2. Horseshoe shape. Small diffusion.

Table 5
The accuracy with varying distance of the initial contour from the true boundary
(robustness test). Image in Fig. 9(a).

Distance GGVF COFFA-GGVF DS

24 77.667 83.837 66.932
0.018 0.007 0.076

3.6 71.341 80.137 66.584
0.030 0.016 0.077

6.0 60.475 79.617 66.462
0.045 0.024 0.079
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The experiment compares GGVF and COFFA-GGVF applied to a
synthetic, low contrast image and an object with a concave
boundary subjected to a Gaussian noise of about 2.5% (Fig. 9).

The experiments (Table 3) show that the vector fields
constructed with a low diffusion are unable to attract the snake
to the concave boundary due to small gradients and the presence
of noise. However, our version of GGVF is able to develop
gradients capable of attracting the snake into the concavity
without additional corrections often required for such
configurations [39]. Note that when K is small, GGVF does not
“feel” the concavity whereas for average and large K, GGVF does
not converge. Consequently, COFFA-GGVF outperforms GGVF for
almost every K. The distance snake displays a low performance
even with the best threshold obtained manually.

Furthermore, we incorporate three popular edge detection
algorithms, namely, Prewitt [43], Sobel [45] and Canny edge
detection [44]. We test them using the trial and error approach

c

Fig. 10. Test images (a) banana, (b) plane, (c) letter E, (d) horseshoe-Gaussian noise, (e) synthetic “tumor”—speckle noise, (f) letter E scaled to [0,1], (g) horseshoe-Gaussian
noise scaled to [0,1], (h) horseshoe, speckle noise scaled to [0,1] and (i) synthetic “tumor”, speckle noise, scaled to [0,1].

Fig. 11. A series of sheared and twirled image “banana”.
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Table 6
Average accuracy. Series of images in Figs. 10 and 11, *—an Otsu threshold, **—the
best threshold.

Method/series GGVF  COFFA-GGVF DS BS
Banana series 85.106 86.443 69.819 75.667
0.009 0.006 0.025* 0.018
79.197
0.019**
Plane series 78.565 79.517 78.883 56.276
0.009 0.008 0.015 0.017
E-series 68.428 91.450 40.850 72.239
0.019 0.013 0.023 0.021
Horseshoe series 70.162 80.261 66.231 60.417
0.023 0.010 0.067 0.081
Horseshoe series, speckle noise  69.529 85.940 52.029 59.511
0.013 0.005 0.023 0.037
Synthetic tumor, speckle 76.047 96.302 51.936 54.094
Noise 0.021 0.003 0.007 0.011
Table 7

Average accuracy. Series of images in Figs. 10 and 11.
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and combine them with GGVF, DS and COFFA-GGVF. Table 4
shows that the performance of COFFA-GGVF is the best
irrespective of the underlying edge detection procedure.

Next, the accuracy is evaluated with a varying Hausdorff
distance (12) between the initial contour and the true boundary
(the robustness test). The initial contour evolves from a small
circle initialized inside the object. The contour is subjected to the
GGVF snake routine until it reaches a certain distance from
the boundary. Finally, the contour is used as the initial one on the
actual noisy image. The accuracy of COFFA-GGVF and DS
practically does not depend on distance; however, the accuracy
of the DS is low since it cannot resolve the concavity without
additional modifications of the algorithm. Observe that it has
been demonstrated in many works (for instance [37]) that the
GGVF snake enters the concavity of the horseshoe-shaped image
and accurately attaches itself to the actual boundary. However,
when the noise is present, GGVF does not perform that well.
Table 5 shows that with a 2.5% noise the accuracy of GGVF drops
by 11% when the initial contour is at a 6 pixel distance from

Method/series Distance (pixels) GGVF COFFA-GGVF DS BS

Banana series 5.7 85.106 86.443 79.197 75.667
0.009 0.006 0.019 0.018
103 74.328 86.446 66.819 49.308
0.016 0.006 0.020 0.019
Plane series 4 78.565 79.517 78.883 56.276
0.009 0.008 0.015 0.017
6.7 77.040 78.003 77.658 31.602
0.012 0.009 0.015 0.022
E-series 4.5 68.428 91.450 40.850 72.239
0.019 0.013 0.023 0.021
8 42.808 74.984 27.606 43.745
0.032 0.020 0.028 0.027
Horseshoe series 3.5 70.162 80.261 66.231 60.417
0.023 0.010 0.067 0.081

6.0 60.203 78.011 63.410 49.93
0.047 0.029 0.059 0.084
Horseshoe series, speckle noise 3.5 69.529 85.940 52.029 59.511
0.013 0.005 0.023 0.037
6.0 58.712 80.088 50.16 47.142
0.034 0.023 0.048 0.059
Synthetic tumor series, speckle noise 4.0 76.047 96.302 51.936 54.094
0.021 0.003 0.007 0.011
6.0 71.899 86.394 38.171 29.177
0.027 0.008 0.038 0.049

Table 8

Sensitivity of COFFA-GGVF to the threshold variation. Images in Figs. 10 and 11.

Threshold/Series T, —0.1Ty; T,—0.1T,

T,+0.1Ty; To—0.1T,

Ty —0.1Ty; To+0.1T» T, +0.1Ty; To+0.1T>

Banana series 86.891
0.005
Plane series 74.028
0.016
E-series 92.310
0.009
Horseshoe series 81.413
0.010
Horseshoe series speckle noise 86.136
0.005
Synthetic tumor series, speckle noise 96.423

0.004

82.704 87.351 81.911
0.010 0.005 0.010
80.117 76.372 82.109
0.007 0.014 0.007
87.918 92.527 87.830
0.017 0.009 0.016
81.053 75.038 73.803
0.010 0.020 0.023
85.930 79.164 77.391
0.004 0.007 0.004
92.014 96.813 91.711
0.008 0.004 0.009
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the object whereas COFFA-GGVF still performs satisfactory. The
required thresholds for COFFA-GGVF for this and all the
forthcoming examples were obtained by the Otsu algorithm.

Example 3. Thirty noisy images.

This example shows the applicability of COFFA-GGVF to a
variety of low contrast noisy images depicted in Fig. 10. Typical
snake initializations are shown by points around the object.
Images (a)-(d) are subjected to 2% Gaussian noise. Images (d) and
(e) are subjected to a speckle noise characterized by variance
0=2.0 (see Fig. 10).

Note that since the images are characterized by a low contrast,
the noise is not clearly visible. Therefore, images (f)-(i) represent
the original images scaled to [0,1] to show that the impact of the
noise is significant.

a
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Next, every image was distorted four times using the shear and
the twirl transformations with different parameters creating a
series of five test images (see Fig. 11).

Average accuracy and sensitivity tables are presented below.
The method has been compared with GGVF, DS and the balloon
snake (BS). Due to the noise, BS does not perform well and even
diverged in several cases. The tables show that on average COFFA-
GGVF is superior with regard to GGVF, DS and BS. Note that DS
may work better when the threshold is selected manually (see
Table 6 the Banana series) but still it cannot achieve the accuracy
of COFFA-GGVF. Besides DS fails on the E-series since the snake
gets attracted by another object as shown in Example 1. The plane
series shows similar accuracy for GGVF, COFFA-GGVF and DS in
terms of true positives. Both GGVF and COFFA-GGVF are 2 times
better than DS in terms of the Hausdorff distance. However,
COFFA-GGVF is an apparent winner for the E-series and the
Horseshoe-series and the Tumor series with a 10-20% accuracy
increase in terms of true positives and a clear advantage in terms
of the Hausdorff distance.

Table 7 displays a better robustness of the new algorithm with
reference to other methods. We also evaluated the sensitivity of
the algorithm to thresholds T;,T, selected by the Otsu algorithm.
Table 8 shows the last experiment. Both thresholds have been
varied by 10%, which constitutes a total of 20% change. However,
even with this relatively large change the accuracy does not
change significantly and is still appropriate (compare with
Table 7, column COFFA-GGVF). Finally, note that the Otsu
threshold is not optimal. Table 8 shows that there could be
better thresholds obtained by a trail and error procedure.
Nevertheless, Otsu’s method provides an appropriate (but not
the best) accuracy as applied for the COFFA-GGVF method.

6. Numerical experiments with ultrasound images of breast
tumors

Detection of tumors in ultrasound (US) images by a trained
physician is usually efficient and the number of false negatives is
low. However, manual segmentation of the tumor boundary is

Table 10
The accuracy for different edge map methods. US image in Fig. 12.

Method GGVF COFFA-GGVF DS BS
Prewitt 55.900 79.785 34.806 45.935
0.032 0.012 0.052 0.061
Sobel 57.387 81.817 34.911 46.301
0.029 0.011 0.052 0.061
Fig. 12. Low contrast US image (a) ROI and a snake initialized inside the contour, Canny 54136 79.084 33.917 44.822
(b) the ground truth, (c) GGVF, (d) COFFA-GGVF, K=0.4, (e) distance snake and 0.032 0.016 0.053 0.064
(f) balloon snake.
Table 9
Accuracy: GGVF, COFFA-GGVF, DS and BS vs. the ground truth. US image in Fig. 12; 110 iterations.
Method/estimate GGVF COFFA-GGVF DS BS
K K T=0.267
0.01 0.1 0.4 0.01 0.1 0.4
The best 47.853 55.900 53.827 78.713 79.785 79.501
0.057 0.032 0.032 0.012 0.012 0.012 34.806 45.935
The worst 45.061 46.015 34.194 48.433 49.767 50.566 0.052 0.061
0.057 0.054 0.061 0.035 0.035 0.035
Converg. No No No Yes Yes No
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Table 11
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The accuracy for different initial contours. US image in Fig. 12.

Distance (pixels) GGVF COFFA-GGVF DS BS

3 70.401 81.612 38.037 54.282
0.024 0.012 0.029 0.055

6.8 55.900 79.785 34.806 45.935
0.032 0.012 0.052 0.061

8.4 53.219 73.471 32.102 25315
0.054 0.014 0.057 0.071

Fig. 13. Low contrast US image (a) ROI and a snake initialized inside the contour,
(b) ground truth, (c) GGVF, (d) COFFA-GGVF, K=0.4, (e) DS and (f) BS.

Table 12

tedious and time-consuming. Therefore, automatic segmentation
techniques are important to help us to better visualize the tumor
boundary, to calculate the volume of the tumor and to extract
features needed for tumor classification (benign or malignant).
The US images of the breast tumors are characterized by the low
contrast, a high level of noise, speckles and tissue related textures
obstructing the actual tumor. It is often the case that for these
images the snake contour must be initialized very close to the
object; otherwise it “does not feel” the edge of the actual object
and converges to a false boundary. All the presented tumor
images have been preprocessed using the density-weighted
contrast enhancement filter [53] to better differentiate the
background and tumor areas.

Example 4. A low contrast malignant tumor.

This example demonstrates the method applied to a low
contrast US image of the breast tumor in Fig. 12(a). The ground
truth image in Fig. 12(b) and the other ground truth images were
outlined by Dr. Mavin Wongsaisuvan, who is currently a leading
radiologist with the Queen Sirikit Center for Breast Cancer of King
Chulalongkorn Memorial Hospital, Bangkok Thailand.

The results obtained with GGVF and COFFA-GGVF are shown in
Fig. 12(c) and (d). They reveal that the conventional GGVF
produces a smoother but less accurate contour as compared with
the COFFA-GGVF. This conclusion is also supported by Table 9,
which displays the accuracy for various diffusion coefficients.

Note that the maximum accuracy that has been achieved by
GGVF with K=0.1 after 50 iterations is of 55.9% whereas COFFA-
GGFV reaches 79.8% with 70 iterations and K=0.1. However, the
iterations for GGVF diverge for every K. Therefore, even 55.9% is
hardly achievable since it is not clear how to interrupt the
iterations. The accuracy increase provided COFFA-GGVF with
the reference to GGVF ranges between 17.6% and 54.9%. Finally,
the DS and the BS perform extremely poor. This is because they

Table 13
The accuracy for different edge detection methods. US image in Fig. 13.

Method GGVF COFFA-GGVF DS BS
Prewitt 57.352 64.153 41.470 17.731
0.033 0.021 0.039 0.052
Sobel 55.961 66.081 42.151 17.782
0.033 0.020 0.034 0.052
Canny 53.180 64.102 40.390 16.081
0.034 0.023 0.036 0.051

Accuracy: GGVF, COFFA-GGVF, DS and BS vs. the ground truth. US image in Fig. 13; 130 iterations.

Iteration GGVF COFFA-GGVF DS BS
K K T=0.239
0.01 0.1 0.4 0.01 0.1 0.4
The best 38.507 56.327 57.352 63.766 64.153 61.378
0.043 0.033 0.033 0.026 0.021 0.030 41.470 17.731
The worst 35.437 38.180 9.247 58.393 59.346 52.956
0.046 0.043 0.051 0.033 0.031 0.031 0.039 0.052
Converg. No No No Yes Yes Yes
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The accuracy for different initial contours. US image in Fig. 13.

Distance (pixels) GGVF COFFA-GGVF DS BS

9.3 61.428 69.818 43.370 33.821
0.019 0.012 0.035 0.040

16.3 57.352 64.153 41.470 17.731
0.033 0.021 0.039 0.052

21 49.938 57.641 40.250 9.610
0.041 0.028 0.039 0.071

are easily attracted by small clusters of noise with a large
amplitude. Finally, Tables 10 and 11 show the advantage of the
proposed method with regard to the variety of underlying edge
map methods and with regard to different initializations.

Example 5. A low contrast malignant tumor. Complicated shape.
High noise.

Results similar to those from the previous example are obtained
for a malignant tumor in Fig. 13(a). Table 12 reveals that COFFA-
GGVF outperforms the standard GGVF at every iteration and for
every diffusion coefficient.

Fig. 14. (a) Original image (b) speckle noise 6=0.4 and a snake initialized inside the contour, (c) the ground truth, (d) GGVF, (e) COFFA-GGFF, (f) BS-COFFA-GGVF, K=0.4,

(g) DS and (h) BS.

Table 15

Accuracy vs. the noise level: GGVF, COFFA-GGVF, DS, BS and BS-COFFA-GGVF. Image in Fig. 14.

Speckle noise GGVF COFFA-GGVF DS BS BS-COFFA GGVF
K K K
0.01 0.1 0.4 0.01 0.1 0.4 0.01 0.1 0.4
0.2 The best 42.42 80.52 84.64 98.33 98.82 98.59 75.61 67.15 98.62 98.71 98.13
0.027 0.011 0.010 0.003 0.003 0.004 0.018 0.013 0.003 0.003 0.003
The worst 36.37 76.03 54.14 96.72 96.31 96.19 T= 96.04 96.40 96.68
0.035 0.035 0.039 0.004 0.004 0.004 0.239 0.003 0.004 0.003
Converg. No Yes No Yes Yes Yes Yes Yes Yes
0.4 The best 3717 79.87 76.82 97.19 97.11 96.86 68.46 67.03 97.18 97.19 97.10
0.027 0.013 0.029 0.003 0.003 0.004 0.016 0.023 0.004 0.004 0.004
The worst 21.70 62.39 62.38 76.72 77.20 76.76 T=0.241 78.04 76.10 77.26
0.029 0.041 0.046 0.035 0.035 0.034 0.032 0.031 0.031
Converg. No No No Yes Yes Yes Yes Yes Yes
0.6 The best 25.89 76.37 74.34 96.75 96.21 96.12 63.65 61.28 96.63 96.32 96.21
0.033 0.014 0.032 0.003 0.003 0.004 0.018 0.017 0.004 0.004 0.004
The worst 25.05 55.45 48.40 74.59 75.10 72.79 = 75.48 76.04 77.18
0.037 0.036 0.030 0.038 0.038 0.044 0.247 0.039 0.039 0.036
Converg. No No No Yes Yes Yes Yes Yes Yes
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Fig. 13(c) and (d) demonstrates a typical difference between
GGVF and COFFA-GGVF for large diffusion coefficients. The
conventional GGVF creates such forces that certain segments of
the snake collapse. This is because the free term of the GGVF
equations over-smoothes the boundary. Eventually the boundary
is “lost” and the snake collapses. As opposed to that COFFA-GGVF
uses the adaptive edge map to calculate the gradient which is
becoming smaller at the false boundaries and, therefore, does not
over-smooth. The accuracy increase provided COFFA-GGVF with
the reference to GGVF ranges from 40.0 to 80%. Note that GGVF
diverges for K=0.1 and 0.4, whereas COFFA-GGVF remains stable
although the accuracy is not good. Finally, note that only COFFA-
GGVF resolves the strong edge outlined by the radiologist on the
right side of the US image (Fig. 13(b) and (d)). However, all tested
snakes failed to attach themselves to the corner-like boundary on
the right side of the tumor (Fig. 13(a)).

The use of COFFA-GGVF and other methods with different edge
maps is similar to the previous example (Table 10). The sensitivity
shown in Tables 13 and 14 shows an advantage of the proposed
scheme. Although on average the accuracy is low, the initial

Fig. 15. Low contrast US image (a) ROI and a snake initialized outside the contour,
(b) the ground truth, (c) GGVF, (d) COFFA-GGVF, K=0.4, (e) DS and (f) BS.

Table 16
Accuracy: the Hausdorff distance. Image in Fig. 15.
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contour at a 9 point distance produces a reasonable accuracy of
about 70% only when COFFA-GGVF is applied.

Example 6. A low contrast benign tumor. High noise.

This example demonstrates application of the proposed method
to a relatively smooth benign tumor of the breast shown in
Fig. 14(a).

We analyze GGVF, COFFA-GGVF, DS and BS. Besides a new
combination BS-COFFA-GGVF has been tested. The image was
subjected to an additional artificial speckle noise on top of the
present natural noise (Table 15).

Although the conventional GGVF leads to higher smoothing, it
does not work better even for the round shape. Only a small diffusion
K=0.1 produces results comparable with COFFA-GGVF. Large
diffusion coefficients destroy the boundary and collapse the snake.

DS and BS perform relatively good but still GGVF and COFFA-
GGVF outperform these methods. Besides, DS required different
thresholds for different levels of noise. Note that the original
image itself is noisy; however, since the tumor is smooth and
round it can be captured even with an additional speckle noise.
Table 15 shows the best results produced by COFFA-GGVF vs. the
other snakes subjected to an increasing level of noise.

Clearly, the conventional GGVF is more sensitive to the noise
which produces a vector field characterized by repelling and
attracting stars, which distract the snake from the actual
boundary. Interestingly enough, the combination BS-COFFA-
GGVF produced similar or even slightly better results for every
tested level of noise. This shows that COFFA-GGVF can be
successfully combined with other types of snakes.

Example 7. A low contrast malignant tumor. Complicated shape.
High noise.

Finally consider a tumor with a very complicated shape
outlined by a radiologist (Fig. 15(a) and (b)).

Fig. 15(c) and (b) displays the results obtained with GGVF and
COFFA-GGVF. Clearly, the GGVF snake shows a lower accuracy and
collapses at many points, whereas COFFA-GGVF collapses only once
and provides a shape closer to the original. It is hard to expect a very
high accuracy in the case of such a complex shaped tumor since the
collapsed snake forms spikes shown in Fig. 15(c)-(f). Therefore,
Table 16 displays accuracy in terms of the Hausdorff distance, which
characterizes the spikes better than the true positives.

Clearly, COFFA-GGVF leads to a better accuracy. The best
accuracy achieved for K=0.1 and K=0.4 is about 30% better than
the best result obtained with GGVF. Finally, COFFA-GGVF
converges, whereas the conventional GGVF diverges for any K.

7. Conclusions

The proposed adaptive edge map derived from continuous
orientation force field analysis extends the generalized gradient
vector flow method to the case of a nonlinear source term, which
“remembers” the preceding iterations. The method provides an

Method/estimate GGVF COFFA-GGVF DS BS
K K T=0.231 T=0.231
0.01 0.1 0.4 0.01 0.1 0.4
The best 0.014 0.012 0.012 0.008 0.008 0.009 0.014 0.017
The worst 0.014 0.013 0.015 0.013 0.013 0.014
Converg. No No No Yes Yes Yes
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accuracy increase ranging from 10 to 80%, depending on the noise
level, complexity of the contour and the accuracy measure, with
the reference to the standard generalized gradient vector flow, the
distance snake and the balloon snake. The model is less sensitive
with regard to the distance between the initial contour and
the object boundary. The method can be applied with a variety
of edge detection methods and in many cases the required
thresholds can be selected automatically using Otsu’s algorithm.
The method shows much promise as applied to detection of breast
tumors in ultrasound images.
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