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a b s t r a c t

The paper presents a simple, parameter-free method to detect the optic disc in retinal images. It works
efficiently for blurred and noisy images with a varying ratio OD/image size. The method works equally
well on images with different characteristics which often cause standard methods to fail or require a new
ccepted 1 September 2010
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round of training. The proposed method has been tested on 214 infant and adult retinal images and has
been compared against hand-drawn ground truths generated by experts. It displays consistently high OD
detection rates without any prior training or adjustment of the parameters.

© 2010 Elsevier Ltd. All rights reserved.
ariable size detection
edical image processing

. Introduction

Precise localization of an optic disc (OD) boundary is an impor-
ant problem in ophthalmic image processing. Once the OD has
een identified, other regions of clinical importance such as the
ovea or macula can be easily determined. The OD is important
or establishing a frame of reference within the retinal image,
or instance for diagnosis of abnormalities such as hypertensive
etinopathy [1]. Because of its immense importance, a variety of
mage processing techniques have been proposed.

The OD detection techniques can be classified into several
roups as follows: blood vessel tracing [2,3], template match-
ng [4,5], boundary tracing [6–8], active contour or snake [9–12],

achine learning [13–18], multilevel thresholding [19] and shape
etection [20–22].

The OD detection algorithm, presented by Foracchia et al. [2], is
ased on a model of vascular structure. The authors used a geomet-

ical parametric model to locate the centre point of the OD. Akita
nd Kuga [3] trace the parent–child relationship between blood
essels segments, tracking back to the centre of the OD. The method
equires a robust detection of the blood vessels, which is difficult
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in images of the diseased retina where even quite sophisticated
algorithms detect false positives along the edges of white lesions
and along the OD. Lalonde et al. [4] use a pyramidal decomposition
and Hausdorff-based template matching guided by scale tracking
of large objects using a multi-resolution image decomposition. This
method is effective, but rather complex and hard to implement.
In three dimensional reconstructions of conventional stereo OD
image procedures, the resulting three-dimensional contour images
that show OD structure clearly and intuitively is presented in [6],
helping physicians to understand the stereo disc photograph. A
semi-automated method is used by Cox and Wood [7] to indicate
external points on the boundary which are automatically con-
nected by a tracing procedure. Morris et al. [8] present a completely
automatic method which traces between points on the bound-
ary identified automatically by their gradient. Sinthanayothin et
al. [13] use the intensity variation between the dark vessels and
the bright nerve fibers to locate the OD, the work also locates the
fovea, and retinal blood vessels. However, this algorithm often fails
when detecting the OD in fundus images with a large number of
white lesions. Active contour models (snakes) have been applied to
images centred on the optic nerve head [9–12]. They are reported to
be successful for high resolution and high contrast images. The main
drawback of these algorithms is the convergence to false bound-

aries caused by the noise and missing edges which often occur in
infant images captured to screen for Retinopathy of Prematurity
(ROP) [23].

Principal component analysis (PCA) and active shape techniques
are often combined to detect the OD centre and to approxi-
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ate the OD area by using a “disc space” [14,15]. Kavitha and
henbaga [19] use morphological operations and multilevel thresh-
lding to extract the brighter regions that include the OD and
xudates. Jelinek et al. [5] use Canny edge detection, template
atching and the Haar transform to detect the OD boundary.

orona et al. [16] use an algorithm, combining power cepstrum
nd zero-mean-normalized cross correlation techniques, which
xtract depth information using coarse-to-fine disparity between
orresponding windows in a stereo pair. The grey level encoded
parse disparity matrix is subjected to a cubic B-spline operation to
enerate smooth representations of the OD surface and new three-
imensional matrices from isodisparity contours. A combination
f the methods is given that determines whether a macula centred
etinal image is from the left or right eye and automatically detects
he OD, the fovea and the vascular arch by inferring the location
f a set of landmarks placed on these structures [17]. The result
f the automatic detection of the optic nerve using digital red-free
undus photography is presented in [18]. The location of the OD is
redicted by using a two-class, Bayesian classifier. The main draw-
ack of this approach is its computational complexity. Chrástek et
l. [24] present an image registration technique for automated seg-
entation of the OD in two imaging modalities, namely, in images

f scanning laser tomography and in colour images. However, this
ethod requires user interaction to locate several couples of corre-

ponding features (landmarks). Manual location of landmarks may
esult in low precision of the final registration. Mathematical mor-
hology techniques have been used widely for extracting image
omponents because it is fast and requires low computing power.
opharak et al. [20] use morphological operators to find the OD
rea. Another popular method that used to localize the OD is the
ircular Hough Transform (CHT) [21,22]. Sekhar et al. [21] detect
he OD by finding the brightest region within the image. The mag-
itude of the OD is calculated using morphological operations. The
ircular Hough Transform is then applied to the gradient image in
o detect the contour and the centre of the OD. However, Xiaolu and
angaraj [22] show that CHT performance is very poor when the
hape is only slightly non-circular. Niemeijer et al. [25] present an
utomatic system to detect location of the OD and fovea in colour

etinal images. This approach uses a k-Nearest Neighbour regres-
or and a circular template to estimate the distance in pixels to the
bject of interest at any given location in the image based on a set
f features measured at that location. It finds the OD in the first step
nd then searches for the fovea based on the OD location. The algo-

able 1
elected standard OD detection algorithms.

Algorithms Parameters count Parameters

Geometrical parametric
model

>3 Number of data points, in
value, termination criterio

Bayesian classifier >4 Prior probability for the lo
threshold, vascular orient
morphological operators,

Morphological operations >3 Intensity threshold, size o
Circular Hough Transform >3 Canny thresholds, window
Active contour or snake >4 Number of nodes, interna

termination criteria, etc.
Principal component

analysis (PCA)
>3 Size of the cropped image

edge detection threshold,
Pyramidal decomposition

and Hausdorff-based
template matching

>2 Canny thresholds, etc.

Neural networks >2 Number of the training pa
training pattern, etc.

Fuzzy cellular neural
networks

>6 Size of structure elements
MAX template, fuzzy feed
template, etc.

k-Nearest Neighbour
regressor

>3 Number of neighbours, pa
prediction, etc.
aging and Graphics 35 (2011) 51–63

rithm is trained on a set of adult retinal images with and without
lesions.

Finally, a recent literature survey of Winder et al. [26] cites 38
papers on localization of the optic disc and identification of its
boundary. The localization is most frequently achieved by iden-
tifying the point of convergence of the main retinal blood vessels,
or by using active contour models, snakes, principal components
analysis (PCA) or the watershed transforms. A number of articles
combined PCA and snakes to achieve localization of the disk and
definition of the boundary. However, segmentation of the vessel
structure could be computationally hard requiring a very well vali-
dated algorithm. This is why methods such as simple identification
of regions of high intensity pixels and adaptive thresholding are
still popular.

Furthermore, most of the above techniques have been applied
to adult retinal images where the retina is well developed and
the image has a very high contrast. Although image acquisition of
the infant retinal images is fast, it is often done in poor lighting
conditions. Besides, the infant retina is not very well developed.
This results in low-contrast, blurred and dark images. Therefore,
many standard detection algorithms fail to correctly detect the OD
for infant retinal images. Furthermore, all of the above mentioned
schemes require a set of control parameters such as the operator
window size, the size of templates, certain thresholds, etc. These
parameters must be optimized using a set of training images. Con-
sequently, the algorithms are efficient and robust as applied to a
set of images with similar characteristics (contrast, light condi-
tions, etc.) but fail completely on different sets. The number of the
control parameters is usually greater than 3 and the range of the
parameters is usually large (see Table 1).

This paper employs a concept of feature based detection com-
bined with a scale-space approach. The mathematical foundations
of the scale-space analysis were first proposed by Witkin and Koen-
derink [29,30] to obtain a multi-scale representation of a measured
signal by embedding it into a scale-parameter family of blurred
signals. Later, Lindeberg [31,32] used this concept to analyze struc-
tures in digital images. The scale-space analysis employs blurring
the input image so that the objects are smoothed and eventually

turn into the so-called light blobs.

The algorithm appears to be fast and parameter free. It works
efficiently for blurred and noisy images with a varying OD/image
size ratio. The method works equally well on images with differ-
ent characteristics which often cause standard methods to fail or

Used to detect OD? Note

itial model parameters
n, etc.

Yes [2] Mark the centre of
OD only

cation of OD, intensity
ation, size of
etc.

Yes [17]

f structure elements, etc. Yes [20]
size, object radius, etc. Yes [21,22,24]

l and external force, Yes [9–12]

, size of the optic disc,
etc.

Yes [14,15,23]

Yes [4]

tterns, size of the No [27]

, fuzzy feedback MIN and
-forward MIN and MAX

No [28]

rameter vector, error in a Yes [25]
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Fig. 1. Grey-level blobs produced by Gaussian blurring.

equire a new round of training. The proposed method has been
ested by 214 infant and adult retinal images and has been com-
ared against hand-drawn ground truths generated by experts. It
isplays consistently high OD detection rates without any prior
raining or adjustment of the parameters.

. Methods

This section is structured as follows: Sections 2.1–2.3 give a
eneral scale-space representation and blob detection mechanism;
ection 2.4 introduces the feature descriptors used in the post pro-
essing step and Section 2.5 presents the classification techniques.

.1. Multi-scale representation

In order to detect an optic disc in a parameter-free environment,
e disregard all camera-dependent parameters such as size of

he OD and the OD’s colour. We assume, however, that the OD
roduces a dominant light blob which appears in many scales. In
ther words it has a long life over the scale space. The classic scale-
pace theory [31] defines a multi-scale representation f(x,y,�) of a
wo-dimensional image f(x,y) by a convolution with the Gaussian
ernel characterized by a variance �. The successive smoothing
rocess generates a set of output images at various scales related
o �. At the finest scale the output is the original image itself.
he increment of the scale parameter results in suppressing the
mage structures and creating so called light blobs. Throughout
he process, the Gaussian blurring simplifies the image without
roducing new spurious structures. Smaller light blobs that are
lose together merge into larger ones (Fig. 1) until the entire image
ventually contains only one blob.
.2. Blob extraction

At each scale, blobs are segmented. The blob seeds are initialized
t every local maximum. Next the region around the seed grows

Fig. 2. Three examples of the watershed b
aging and Graphics 35 (2011) 51–63 53

until it meets a local minimum. The blob extraction consists of the
following steps:

1) Connected pixels with an equal intensity are grouped into
regions.

2) The regions are sorted with respect to their grey-levels in
descending order.

3) For each region, a list of its neighbouring regions is created.
4) The regions are classified to be background, part of the blob or

merged into blobs with the following criteria
4.1) If the region has no neighbours, then it is a local maxi-
mum point and will be a seed of the blob.
4.2) If the region has a neighbour region with higher grey-
level but that region has been classified as background, then
the current region should be assigned to be background.
4.3) If the region has more than one neighbour region with a
higher grey-level, and those neighbour regions are not parts
of the same blob, then the current region must be set to the
background.
4.4) If the neighbour regions have a higher grey-level than
the current regions and are parts of the same blob, then the
current region is combined with the blob.

Note that the blob extraction algorithm is similar to the stan-
dard watershed method where the blob merging step is equivalent
to the expansion of the watershed. In fact the standard watershed
method can be applied in the framework of the scale-space algo-
rithm as well. However, the watershed techniques applied to the
original image may produce many small blobs which are hard to
interpret (see examples in Fig. 2). As opposed to this the space-
scale technique makes it possible to track only the most significant
blobs with the largest lifetime (Fig. 3).

The entire collection of blobs from all scales (see Figs. 4 and 5)
is passed to blob linking and feature extraction steps presented in
the next sections.

2.3. Scale-space blob linking and blob life time

To construct the scale space, first, we initialize the scales �max

and �min. The maximum scale �max corresponds to the coarsest
scale where it results in only one blob. The finest scale �min = 0. The
intermediate scales are constructed as follows

1) Starting from interval [�min, �max] we binary-search for the next
� which allows not more than two blobs. Once this scale is found,
we blur the original image with this � in the Gaussian kernel. The

sequential blob detection algorithm, described in the previous
section, is used to extract the blobs. This scale is then set as a
new �min.

2) Repeat step 1) until �max − �min < ε where ε is a small value close
to zero.

lob detection applied to raw images.
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ig. 3. Detected blobs in different scales. (a), (b) and (c) Gaussian blurred images w
a), (b) and (c) respectively.

) Link blobs in a finer scale with their counterparts in the adja-
cent, coarser scale [32]. The blob linking through the scale levels
is based on a spatial coincidence. If two blobs at adjacent scales
have a common pixel, they are registered as the blobs which
belong to the same sub tree. Blobs belonging to consecutive
scales are linked to form a scale-space blob tree (see Fig. 6).

Given the scale-space tree, a blob’s lifetime is evaluated to
ndicate the significance of each blob. The lifetime of the blob is

valuated as the number of steps that the blob survives over the
cales before disappearing or merging with other blobs. The signif-
cant blobs surviving longer than others in each sub tree are chosen
s the final candidates. For instance, blobs b1 and b2 in Fig. 6 have
he same significance while b4 is more significant than b1 and b2.

Fig. 4. Blob extraction in several scales (a) original image. (b)–(f) Bl
= 2.21, 4.09 and 14.99 respectively. (d), (e) and (f) The results of blob detection for

2.4. Blob descriptor

An appropriate classifier for the optic disc is still a subject of con-
tinuing research. There exist numerous models combining features
of the OD and the geometric features of the blood vessels which
enter the retina through the OD. For instance, Hoover and Gold-
baum [33] exploit the convergence of the vessels to the OD. Similar
approaches are introduced in [2,34]. Niemeijer et al. [25] consider
9 vessel based features and 2 optic disc based features (the average

intensity and its standard deviation). However, segmentation of the
vascular structure is itself a hard, computationally costly problem
requiring a very well constructed algorithm. On the other hand, for
fast OD detection it is often important to select the simplest set of
features which is related only to the OD. Besides, under the space-

ob detection results at scale � = 0, 2, 4, 8 and 16, respectively.
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In summary, the simplest and the most prominent features of
the OD are the brightness, the roundness and the presence of the
vascular structures on the light background. The third feature can
be detected by the high total variation of the grey level or the high
Fig. 5. Blob extraction (a) original image. (b)–(

cale blurring the vessels inevitably disappear which makes it hard
o incorporate the vessel based features.

The OD is defined as an oval-shaped area with the highest
ntensity containing branches of blood vessels at its centre [35].
herefore, compactness and high intensity are the most common
roperties of the OD employed by many researchers. The compact-
ess is given by

= p2

4�A
(1)

here P and A are the perimeter and the area of the blob, respec-
ively.

Furthermore, Chaudhuri et al. [36] assumed that the grey level
n the OD region is higher than in other parts of the retinal image.
ánchez et al. [37] and Welfer et al. [38] detect the OD by relying
n the assumption that the OD is the brightest region. Perez-Rovira
nd Trucco [39] write “The OD normally appears as a bright circular
one with a radius close to 60 pixels and approximately centred ver-
ically in the image. So a computationally cheap and efficient way

o find plausible OD candidates is to smooth the image (removing
oise and small bright spots) and detect the peaks in the intensity

evel map”. It was observed that a healthy and well-imaged OD has
mean intensity level close to 0.15 higher than the mean of the

ntire image. A survey [26] notes that that the brightness and the

Fig. 6. A scale-space tree.
detection at � = 0, 2, 4, 8 and 16, respectively.

roundness of the OD is combined with a high variation of the grey
level. This was employed by Sinthanayothin et al. [13] and later by
Lowell et al. [40]. Actually, considering the intensity variation as a
feature is a simple way to take into account the strong presence of
the vascular structure converging to the centre of the OD [13]. The
entropy is just another way to represent this feature. Sopharak et
al. [20] showed that the entropy can be used to differentiate the OD
from the background.

The entropy is given by

e = −
L−1∑

i=0

p(zi)log2p(zi) (2)

where zi denotes the grey level and p(zi), i = 0, 1, 2, . . ., 255 is the
corresponding histogram.
entropy. Of course, our choice of the features is intuitive since we

Fig. 7. The decision tree, Tc, Te and TI are the corresponding thresholds for compact-
ness, entropy and intensity, respectively.
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Table 2
Sensitivity to the thresholds for different classifiers.

%

d
p
p
c
w
n
o

2

t
t

F
b

Classifier/recognition rate Decision tree Tc, Te, TI ± 5%

Min 97.67
Max 100.00

id not perform a systematic feature selection. However, the pro-
osed set is simple, easy to calculate and is strongly supported by
revious works. Besides, these features do not depend on the scale,
olour and location of the OD on the image. This complies well
ith the blob detection method in the scale-space. All the domi-
ant light blobs of all scales become the OD candidates irrespective
f the colour, size or location of the OD.
.5. Classifiers

After all three features are normalized to a 0–1 range, we use
hree classification methods to test for the OD, namely, the decision
ree, regression and majority voting.

ig. 8. Optic disc detection of 5 sample images (a) original images (b) all the detected blob
lob (images in rows 1–3 are ROP images, images in rows 4–6 are adult retinal images).
Regression TR ± 5% Majority voting Tc, Te, TI ± 5

100.00 97.67
100.00 100.00

The decision tree constructed by the standard C4.5 [41] employ-
ing Shannon’s entropy is shown in Fig. 7. The threshold for
compactness, entropy and intensity were optimized using a grid
search for the best performance using a training data set. If more
than one blob gets through the decision tree, the one with highest
intensity will be chosen.

The regression based classification follows Niemeijer et al.
[25]. We used the simplest linear regression and a classifier

employing the confidence level, TR. Finally, the majority vot-
ing uses the same thresholds as those obtained for the decision
tree. From a training set of 80 ODs and randomly selected 80
non-OD blobs, the best thresholds are Tc = 0.6, Te = 0.6, TI = 0.6,
TR = 0.8.

s from all scales overlaid on original image (c) images showing the most significant
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Fig. 9. Example of images (a) from group A1 where OD boun

The sensitivity of the classifiers to the thresholds is presented
n Table 2. The thresholds have been varied by 5% which consti-
utes a total of a 10% change. However, even with this relatively
arge change, the accuracy does not change significantly and is still
ppropriate. Moreover, the simple majority voting has approxi-
ately the same accuracy with reference to the decision tree and

he regression.

. Results

We demonstrate the robustness of the algorithm by testing on
wo different datasets, namely set A with 123 adult retinal images
size 752 × 500 pixels at 24-bit) and set B of 91 Retinopathy of Pre-

aturity (ROP) images (size 640 × 480 pixels at 24-bit). Experiment
compares the proposed algorithm with baseline algorithms on the

wo sets to show that the algorithm works well without training.
xperiment 2 tests the algorithms on resized and also randomly
ropped images. Experiment 3 analyses the detection rates on an
ncreasingly noisy set of images and finally, experiment 4 sees how
he algorithm performs with outliers (Fig. 8).

.1. Experiment 1: two different datasets

Data set A is divided into 2 groups. Group A1 consists of 105
mages with a visible OD edge. The remaining 18 images with an
nclear OD boundary are in group A2. We measure the accuracy
f the OD detection at pixel level by comparing them to an oph-
halmologist’s hand drawn ground truth in terms of sensitivity and
he positive predictive value (PPV). Note that general Specificity

s not used because the portion of OD pixels is very small com-
ared to the rest of the image. Specificity is then always close
o 100% because False Positive (FP) and False Negative (FN) are
elatively high compared to True Positive (TP) and True Negative
TN).

able 3
etection results of 123 adult retinal images.

Method Clear-OD-boundary (105 images)

Average sensitivity (%) Averag

The proposed method 71.19 70.90
Morphological operator 90.51 59.58
Circular Hough Transform 69.77 78.23

able 4
etection results for 60 good quality and 31 poor quality images.

Method Clear-OD-boundary (60 images)

Average sensitivity (%) Aver

The proposed method 72.57 92.3
Morphological operator 17.91 13.1
Circular Hough Transform 20.23 20.1
s are visibly clear and (b) group A2 with faint OD boundary.

As a baseline comparison, we use a morphological operator and
the Circular Hough Transform. These two methods are reported to
be the most suitable for the OD detection [20,21,42]. The morpho-
logical operator uses an 8 × 8 structural element and three intensity
thresholds, i.e., 0.75, 0.80 and 0.85. The Circular Hough Transform
employs three Canny thresholds, 0.15, 0.25 and 0.35 to ensure the
best performance of the algorithm. The radius of the target object
is set to 20–45 pixels.

Examples of close-up images around the OD from the both
groups are shown in Fig. 9. The detection rates of our proposed
algorithm compared to the baseline algorithms are displayed in
Table 3.

The ODs in group B appear faint with an unclear boundary.
In turn, group B is divided into group B1 (60 images with a
poor quality) and B2 (31 images with a very poor quality). The
control parameters for the morphological operator method and
the Circular Hough Transform have been obtained from training
set A. Quantitative results from group B1 and B2 are shown in
Table 4. Additional examples of the OD detection are shown in
Fig. 10.

Although, the parameters used in morphological operations and
the Circular Hough Transform are well-adjusted to the adult retinal
images, they are totally unsuitable when applied to set B. There-
fore, the accuracy of the proposed algorithm is comparable with
the accuracy of the standard OD detection methods when they are
applied to the same group of images. However, our method outper-
forms the conventional methods when fed with images obtained
under different conditions. Finally, the OD detection on a combi-
nation of images A (adults) and B (infants) is good proof of the
robustness of the proposed approach.
3.2. Experiment 2: resized and randomly cropped images

Furthermore, we prove the robustness of our algorithm by
testing on images with different sizes. For each set, we generate

Faint-OD-boundary (18 images)

e PPV (%) Average sensitivity (%) Average PPV (%)

52.69 56.46
83.05 31.50
39.28 45.43

Faint-OD-boundary (31 images)

age PPV (%) Average sensitivity (%) Average PPV (%)

8 56.49 38.68
2 10.54 9.37
1 9.43 8.20
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ig. 10. The detection results. Column (a) our proposed method, (b) morphological
re from A1. Images in rows 2 and 3 are from A2. Row 4 is from B1 and Rows 5 and

hree additional data sets with the size 40%, 60% and 80% of the
riginal images and compare the proposed method with the two
onventional detection methods characterized by the same setup.
igs. 11 and 12 illustrate the advantage of the proposed method as
pplied to the resized images. For presentation purposes the images

ave been rescaled to the same dimensions.

Next we also apply our proposed algorithm to a set of ran-
omly cropped images from A and B. Since cropping changes the
atio OD size/image size, the standard methods perform extremely
oorly: 37.2% average sensitivity and 40.6% average PPV whereas
tions, (c) Circular Hough Transform and Canny edge detection. Images in the row 1
from B2.

our method displays a solid performance of 85.37 and 82.87
respectively (see Table 5). Some detection examples are shown in
Fig. 13.

3.3. Experiment 3: sensitivity to random noise
Tables 6–9 compare the accuracy of the method when the
images are distorted by a 1%, 5% and 10% salt-and-pepper noise (see
also Fig. 14). Note that since the proposed algorithm has intrinsic
filtering steps built in because it increasingly blurs the image dur-
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Fig. 11. Detection results at 40% of the original size. Row (a) the proposed method, (b) Circular Hough Transform and (c) morphological operations.

Fig. 12. Detection results, 80% of the original size. (a) the proposed method, (b) Circular Hough Transform and (c) morphological operations.

Table 5
OD detection on cropped images.

Method Average sensitivity (%) Average PPV (%)

The proposed method 85.37 82.87
Morphological operator 37.16 78.56
Circular Hough Transform 50.08 40.59

Table 6
Detection results of adults’ noisy retinal images (105 images with clear OD boundary).

Noise Proposed method Morphological operator Circular Hough Transform

Sensitivity PPV Sensitivity PPV Sensitivity PPV

1% 78.74 65.02 90.48 59.59 78.41 87.00
5% 72.58 64.74 67.55 49.86 76.80 85.11

10% 70.47 60.69 4.68 4.49 77.72 83.64



60 C. Duanggate et al. / Computerized Medical Imaging and Graphics 35 (2011) 51–63

Fig. 13. OD detection results of cropped images (note that images displayed here are resized for presentation purposes). (a) Sizes of the images from (1) to (5) are 170 × 170,
250 × 250, 340 × 340, 420 × 420 and 660 × 660 pixels, respectively. (b) Sizes of the images from (1) to (5) are 140 × 140, 160 × 160, 300 × 300, 360 × 360 and 450 × 450 pixels,
respectively.

Fig. 14. OD detection for retinal images corrupted by 10% salt-and-pepper noise. Images in rows 1 and 2 are from A1. Row 3 is from B1 and Row 4 is from B2. (a)–(c) Detection
results of our proposed method, Morphological operations and Circular Hough transform respectively.
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Table 7
Detection results of adults’ noisy retinal images (18 images with faint OD boundary).

Noise Proposed method Morphological operator Circular Hough Transform

Sensitivity PPV Sensitivity PPV Sensitivity PPV

1% 52.37 56.16 79.86 31.26 33.16 31.86
5% 52.08 56.11 32.81 18.13 36.62 35.51

10% 50.11 52.13 3.35 4.84 29.92 23.92

Table 8
Detection results of ROP noisy retinal images (60 images with clear OD boundary).

Noise Proposed method Morphological operator Circular Hough Transform

Sensitivity PPV Sensitivity PPV Sensitivity PPV

1% 65.78 83.68 17.86 13.32 2.74 5.49
5% 60.45 83.42 8.68 8.53 5.62 6.95

10% 54.53 72.34 1.39 2.03 7.18 10.82

Table 9
Detection results of ROP noisy retinal images (31 images with faint OD boundary).

Noise Proposed method Morphological operator Circular Hough Transform

Sensitivity PPV Sensitivity PPV Sensitivity PPV
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0.78
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1% 55.34 38.42 1
5% 54.89 38.55

10% 52.18 37.04

ng the scale-space tree construction, the noise is reduced. To make
fair comparison we preprocess the images using a 3x3 median
lter before the morphological operator and the Circular Hough
ransform are applied.

.4. Experiment 4: outliers

Finally, the algorithm was tested on outliers shown in

igs. 15 and 16. The image in Fig. 15 is characterized by a differ-
nt colour spectrum and dominant white lesions. Even though our
rst predicted result is incorrect (Fig. 15a), the second blob pre-
icts the OD correctly (Fig. 15b). The algorithm fails because the
ompactness and brightness of the first candidate blob are much

Fig. 15. The OD detection results of retinal images with white

ig. 16. Example of fault detection. (a) Original image (b) all extracted blobs overlaid on
he close-up in OD area.
9.53 6.01 6.66
8.57 0.72 3.23
0.65 0.27 0.35

higher than those of the actual OD. Besides, the entropy of the false
blob is similar to the real entropy of the actual OD with dominant
blood vessels in the middle of the blob.

Fig. 16 shows the case when all the algorithms including the
proposed one fail. The optic disc can barely be seen, appearing
volcano-like and darker than its perimeter. The boundary of the OD
is faint and the intensity of the area close to the OD is not uniform.
We believe that even these cases can be treated by our algorithm

if it were combined with a vessel-tracing procedure. However, the
outliers remain an open problem.

In our experiment, all algorithms are implemented using MAT-
LAB on Windows XP SP3. The average runtime on an Intel Core 2
Duo P8400 2.4 GHz CPU with ram DDR2 2GB is shown in Table 10.

lesions and different colour base from normal test sets.

the original image (c) the most significant blob based on proposed method and (d)
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Table 10
Performance of the proposed algorithm.

Sets of images Average time (s)

The proposed method Morphological operator Circular Hough Transform

Adult retinal images 161.79 1.24 13.21
ROP images 138.24 1.05 10.92
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Cropped images 75.44
Adult retinal images with noise 223.15
ROP with noise 215.72

. Conclusions and discussion

A simple and efficient, parameter free method to detect the
ptic disc is proposed. The OD candidates are selected from sig-
ificant scale-space blobs. Three descriptors, namely, compactness,
ntropy and blob brightness are extracted from each blob. The OD is
hen identified by three different classifiers, namely decision tree,
egression based classifier and majority voting. The results obtained
y the three classifiers indicate a low sensitivity to the classifica-
ion threshold. The algorithm has been verified with 214 infant
nd adult retinal images supplemented with experts’ hand-drawn
round truths. The accuracy of the proposed algorithm is compara-
le with the accuracy of the standard OD detection methods when
he standard procedures are trained. However, the method outper-
orms the conventional schemes when fed with images obtained in
ifferent conditions. These conclusions are supported by an addi-
ional series of experiments on resized, cropped and noisy images.
he high detection rate and the parameter-free nature of the algo-
ithm make it possible to suggest a hardware implementation for
n online OD detection.
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