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ABSTRACT

Segmentation of ultrasound (US) images of breast cancer is one of the most challenging problems of the
modern medical image processing. A number of popular codes for US segmentation are based on a gen-
eralized gradient vector flow (GGVF) method proposed by Xu and Prince. The GGVF equations include a
smoothing term (diffusion) applied to regions of small gradients of the edge map and a stopping term to
fix and extend large gradients appearing at the boundary of the object.

The paper proposes two new directions. The first component is diffusion as a polynomial function of
the intensity of the edge map. The second component is the orientation score of the vector field. The
new features are integrated into the GGVF equations in the smoothing and the stopping term.

The algorithms, having been tested by a set of ground truth images, show that the proposed techniques
lead to a better convergence and better segmentation accuracy with the reference to conventional GGVF
snakes. The adaptive multi-feature snake does not require any hand-tuning. However, it is as efficient as
the standard GGVF with the parameters selected by the “brutal force approach”. Finally, proposed
approach has been tested against recent modifications of GGVF, i.e. the Poisson gradient vector flow,
the mixed noise vector flow and the convolution vector flow. The numerical tests employing 195 syn-

thetic and 48 real ultrasound images show a tangible improvement in the accuracy of segmentation.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The accuracy of the computer based diagnostics of the ultra-
sound images of breast is still not sufficient especially in early
stages when the cancers are very subtle and vary in appearance.
Moreover, it is often difficult to separate the tumor from the back-
ground even when its existence is evident. Therefore, segmenta-
tion of tumors is one of the most important problems in the
computer aided US diagnostics of breast cancer.

Among the most promising techniques for extraction of com-
plex objects from digital images are active contours or snakes, orig-
inally introduced by Kass et al. [1]. Since the seminal work of Kass
and colleagues, techniques based on active contours have been ap-
plied to many object extraction tasks with a different degree of
success.

In particular, snakes have been used to locate the objects in var-
ious applications of medical image processing such as segmenta-
tion of abnormalities in the images of the human heart, liver,
brain, breast [2-10]. The main drawback of the method is that
the noise and small objects may attract the snake to a local energy
minimum, which does not correspond to the actual boundary.
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Therefore, to reach the desired boundary, the initial contour should
be initialized close to the object. The most important component of
the snake based segmentation is an external force which pushes
the snake towards the object. This force is usually derived from
the gradient of the image gray level. Therefore, in order to enhance
the effect of the external force the gradient created nearby the
boundary must be extended so that the snake “feels” the object
even if it is initialized far from it.

A popular solution is the balloon snake where such a force is
generated artificially. This works for both contracting and grow-
ing snakes (balloons or artificially inflated contours) proposed in
[11]. The distance snakes [12] exploit a similar idea. The external
force is constructed as the negative of the external energy gradi-
ent, which is the distance from each point to its closest edge
points in the image. Consequently, the initial contour can be lo-
cated far away from the desired boundary if there are no spurious
edges along the way. Furthermore, many variations of this idea
such as the “stop and go” snakes [13], multi-direction snakes
[14], gravitation force snakes [15], watershed-balloon snakes
[16], balloon snakes with nonlinear filtering [17] have been intro-
duced and analyzed. The image force is modified or altered to in-
crease the capture range and decrease the sensitivity to a possible
noise, shadows and (in case of the medical images) obstructing
structures and tissues.
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Another group of methods is based on minimization of the en-
ergy subject to a certain conditions improving the convergence and
accuracy. Sectored snakes [18] deform the contour subject to con-
straints derived from a priori knowledge of the object shape, ex-
tracted from the training set of images. Fourier type descriptors
have been used in [19] to evolve the curve to a prescribed shape
defined by a template. The prior information is introduced through
a set of invariants (translation, rotation and scaling) computed
using the Fourier Transform. Furthermore, the force includes not
only the edge based features but region based features as well.
For instance, the homogeneity of the enclosed region [20,21]. In
[22] region-based image features are combined with the edge-
based features incorporated in the external forces.

Starting from multiple seeds, [22] performs segmentation of the
entire image by iterative boundary deformation and region merg-
ing iteratively.

The so-called T-snakes proposed in [23] and their improve-
ments such as the dual T-snakes [24] based on iterative re-param-
eterization of the original contour are able to make the use of the
self loops. However, the approach allows only “rigid” deformations
limited by the superimposed “simplicial grid”. An intrinsic internal
force that does not depend on contour parameterization based on
regularized contour curvature profile has been proposed in [25,26].

A competing approach called the level set method (LSM) [27] is
based on the ideas proposed by Osher and Sethian [28] to use a
model of propagating liquid interfaces with curvature-dependent
speeds. The LSM combined with the contour energy minimization
resulted in a variety of the so-called geodesic deformable models
[29-32]. However, the LSM makes it difficult to impose arbitrary
geometric or topological constraints on the evolving contour via
the higher dimensional hyper surface. Besides, the level set models
may generate shapes having inconsistent topology with respect to
the actual object, when applied to noisy images characterized by
large boundary gaps [33] and non-closed curves [34].

Another group of competing approaches includes region based
models aiming to smooth the image within the homogeneous re-
gions but not across the boundaries of such regions. One of the
most popular and widely studied is the Mumford and Shah model
[79]. The original Mumford-Shah functional consists of a fidelity
term, forcing the solution to be as close as possible to the given im-
age, a smoothing term forcing the solution to be as smooth as pos-
sible everywhere except the image discontinuities and the
geometric term, forcing the total length of the edges to be as short
as possible. A variety of the Mumford-Shah model has been pro-
posed and analyzed (see a survey [80]). One of the most significant
developments is the Chan-Vese model [81] which is a level set
implementation of the piecewise constant case of the Mumford-
Shah model. Recent combinations of the Mumford-Shah tech-
niques and active contours include active contours without edges
[82], splitting active contours [83] and Mumford-Shah shape-prior
active contours [84].

Rochery et al. propose a parametric model for higher-order ac-
tive contours, in particular, quadratic snakes, for extraction of lin-
ear structures like roads [35]. The idea is to use a quadratic
formulation of the contour’s geometric energy to encourage anti-
parallel tangents on opposite sides of a road and parallel tangents
along the same side of a road. These priors increase the final con-
tour’s robustness to partial occlusions, decrease the likelihood of
false detections in regions not shaped like roads, and help to pre-
vent self-looping.

Further improvements lie along the lines of processing the
underlying vector field rather than modifying the snake model it-
self. A number of popular codes are based on a gradient vector flow
(GVF) method proposed by Xu and Prince [36,37]. A “raw” gradient
vector field derived from the image edges is replaced by a vector
field which minimizes a certain variational functional. The

functional is designed to extend the large gradients far from the
boundary, smooth the noise and speckles while keeping gradients
attached to strong edges.

The generalized gradient vector flow field (GGVF) [38] extends
the GVF method by introducing non-uniform diffusion. The GGVF
is defined as a steady state solution of a system of parabolic equa-
tions with the elliptic terms and the source term similar to the GVF
model. However, the GGVF employs space-dependent diffusion
which provides better segmentation accuracy and a larger capture
range. Some variations of these ideas are the multidirectional
GGVF based on a special algorithm to evaluate the gradients and
the diffusion coefficients [14] and the non-linear diffusion method
presented in [39].

Numerous research papers apply the GGVF based active con-
tours to medical images. The examples are multi-direction snakes:
skin cancer images [14], topology-adaptive snakes: MR brain
images and CT scans[23], gravitational force snakes: a variety of
medical and non-medical images [15], narrow-band snakes: MRI
and CT scan images of lungs [40], distance snake, GVF snake, bal-
loon snake, “area and length” snakes, geodesic snakes, constrained
snakes and level set method: MRI, CT and US images of brain, liver,
kidney [32], region-competition snakes (originally [22]): CT scan
slices of arteries [41], sectored snakes: abdominal CT scans|5],
parametric snakes: US of breast masses [42], 3D-snakes: US breast
cancer images [42,43], GVF snakes with edge map pre-processing:
US of the kidney tumors [9], GVF snakes combined with the region
growing and the median filter: US breast tumors [10], sketch-
snakes: chest X-ray images [43], combination of snakes and active
shape models: US of the human heart [44], the so-called early-vi-
sion and the discrete-snake model: a variety of the US images
[47], multi-resolution snake: echographic and echobrachial images
[48], GGVF snakes combined with a continuous force field analysis:
breast tumor US images [49].

The success of such segmentations critically depends on prepro-
cessing. As a matter of fact, it is often more important than select-
ing and tuning the active contour. The Gaussian, mean and median
filters [50], Gabor filters [47] and speckle noise filters [50-53] are
among the most popular for the US imagery. A fusion of the median
and the Wiener filter combined with a contrast adjustment tech-
nique and the Frost speckle filter [52] is applied in [54]. A tree-
structured nonlinear filter and special types of wavelet transforms
has been proposed for transrectal ultrasound [55]. The active con-
tour is used by the segmentation module. A comparison between
the segmented image with and without the preprocessing shows
that this module provides an improvement in the accuracy of the
boundary detection. A combination of filtering, edge map and ini-
tialization by a human operator [10] employs an iterative trun-
cated median filter to reduce the speckle noise. In [56] the
speckle noise is suppressed by anisotropic diffusion filter [57]
and a stick filter [58].

More often than not, the preprocessing is not a single step but a
well arranged sequence of operations including (but not limited to)
filtering, morphological transformations and edge detection proce-
dures specific for the particular type of medical imagery. A combi-
nation of region growing and median filtering is proposed for the
GGVF snakes in [10]. A single run of the anisotropic diffusion filter
(non-linear filter [59]) is proposed for the multi direction snake
[14]. Non-linear filters applied to the GVF vector field (rather than
to the original image) are discussed in [17]. A curvature diffusion
filter [60] is applied with the LSM to sonographic images of breast.
An interactive medical image segmentation (sketch snakes) is
introduced in [45,61]. Some preprocessing operations such as the
edge detection can be also controlled interactively by a human
operator. A preprocessing for density-based segmentation [62] em-
ploys histogram adjustment, noise reduction using an iterative dila-
tion [63] and a median filtering to suppress the spike-like noise.
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Multi-scale approach combined with the active contours shows
much promise as applied general segmentation [64,65] as well as
to segmentation of the boundary of the endocardial contour in
ultrasound images [46]. The idea is that a rough initial contour
can be extracted at the highest level of the multiresolution struc-
ture. This crude contour is then used for the initialization of the
optimization process at the coarsest level. The multiresolution
techniques can be combined with a variety of other preprocessing
methods such as the phase portrait analysis [66] which applies di-
rectly to the vector field.

GGVF endowed with an appropriate sequence of noise elimina-
tion steps remains one of the most popular choices for segmenta-
tion of the US images. The method removes gradients produced by
the speckles and the tissue-related edges and allows to hand-tune
coefficients and the force terms in the corresponding Euler equa-
tions. Furthermore, the parameters of the snake can be adjusted
depending on the anticipated shape and size of the tumor. How-
ever, when the noise related gradients are comparable with the
boundary gradients, the diffusion smoothes the false and the true
contour points equally. The smoothing after a large number of time
steps (iterations) may change the direction of vectors pointing
(correctly) towards each other at the true boundary. Besides, GGVF
does not include other features such as the directions of the corre-
sponding vector field. Consequently, a weak boundary which gen-
erates antiparallel vectors having a small magnitude might be
entirely destroyed by the diffusion.

There are several recent variations of the GGVF resistant to
noise and characterized by a large capture range and improved
accuracy. In particular, Poisson gradient vector field (PGVF)
[71,72] is calculated by solving numerically the Poisson equation
where the right hand side is obtained from a binary map produced
by Canny edge detector. The PGVF is then computed as the gradi-
ent of the Poisson solution. The method combined with the genetic
algorithm (GA) connecting broken boundaries was applied to auto-
mate segmentation of tumors of liver in positron emission tomog-
raphy [72] and to automatic extraction of face contours [73].

INgs-GVF (impulse noise estimator) is an attractive modifica-
tion of GVF which combines anisotropic diffusion with an adaptive
median filtering [74]. The model performs well on digital images
corrupted by a mixed noise. However, an appropriate size of the fil-
tering window is still an open problem.

The majority of modifications of GVF are still based on the mag-
nitude of the resulting gradient field and do not include the orien-
tation of the vectors. An attempt to include the direction of the
gradient vector field is the convolution vector flow [75] (CVF) cal-
culated by convolving the edge map with a user-defined kernel.
Since the edges contribute more to the CVF than homogeneous re-
gions, it is beneficial to use kernels similar to the attracting stars or
nodes [66]. These configurations are amplified whereas the noise is
suppressed. The CVF snakes are characterized by large capture
ranges, and converge efficiently to boundary concavities. Addition-
ally, they are more robust to noise and initialization than the stan-
dard GVF snakes. However, a possible drawback of CVF is that the
weak edges might be overwhelmed by the strong edges along with
the noise. This problem is solved by mixing CVF with the standard
gradient field using a threshold that determines the edges to pre-
serve. The threshold works similar to the smoothing parameter
in GGVF. Furthermore, although this method takes into account
the direction of the gradient vector field, it treats the object bound-
ary and the strong noise equally. In other words, gradients invoked
by a strong noise (comparable with the boundary) will be ampli-
fied as well.

The dynamic directional gradient vector flow (DDGVF) [77]
makes use of the gradients in both the x and the y-directions to
generate an external force field for the two directions separately.
Furthermore, the proposed DDGVF is applied dynamically accord-

ing to the orientation of snake in each iteration. A directional score
is generated. Thus, only the edges with a desired gradient direction
participate in the snake deformation [14,76]. However, these
methods require that the user locates a point inside the desired ob-
ject to differentiate the “positive” and ‘“negative” boundaries.
Therefore, it is not suitable for fully automatic detection. Besides,
our experiments show DDGVF performs poorly on the US images.

This paper introduces a new modification of GGVF to evaluate
the local configurations of the vector field and assign each point
a direction score. If the configuration includes nearly anti parallel
vectors, the corresponding diffusion coefficient gets decreased
and the “stopping term” is increased. To the best of our knowledge
this modification is the first model which evaluates the relative
positions of the vectors (configurations of the GVF) and introduces
a continuous directional score of the vector field.

Our second feature is the magnitude of the gray level of the
edge map. The novelty of the model is a score evaluated by using
clusters corresponding to the background, the shadows/noise and
the boundary. The centers of the clusters are used to generate an
interpolating function which represents the magnitude. The ap-
proach generates an adaptable version of GGVF with a diffusion
coefficient evaluated automatically for each individual US image.
We show that the adaptation is as efficient as the standard GGVF
with the parameters selected by the “brutal force” (“trial and er-
ror”) approach individually for every image.

The algorithm has been tested on a set of ground truth images
hand-drawn by leading radiologists with the Queen Sirikit Center
for Breast Cancer of Bangkok [86]: Vongsaisuwon, Chulakadabba
and Manasnayakorn.

The error was evaluated in terms of the maximum and the aver-
age Hausdorff distance (contour based measure) as well as in terms
of the percentage of the true positives (pixel based measure). The
tests show that the proposed techniques lead to a better conver-
gence and better segmentation accuracy with the reference to
the conventional GGVF snakes. Finally, we tested our approach
against the above mentioned modifications of GGVF, i.e. Poisson
gradient vector flow [71-73], mixed noise vector flow [74]| and
the convolution vector flow [75]. The numerical results show a sig-
nificant improvement in terms of the segmentation accuracy.

2. Gradient vector flow snakes

An active contour or snake is a parametric curve
X(s) = (x(s),y(s)), s € [0,1] evolving inside the image domain so that
it eventually attaches itself to the boundary of the object of interest.

The evolution of the snake is governed by Euler equations cor-
responding to an energy functional defined by

-1 1
Ezj/0 a

where the weighting parameters a and b control the snake’s tension
and rigidity.

The minimum of the functional is supposed to be a curve which
approximates a boundary of the object of interest. Although this
claim has never been proven theoretically for realistic assumptions
such as the presence of noise, false objects, speckles, low contrast
areas etc, a strong rationale behind it is variational functional (1).

The corresponding Euler equation is given by

2
+ Eeu(X)ds, (1)

2 2
L p X

dX|” , p|dX
ds?

ds

X d'X
a— +b—F + VEe = 0. 2
ds? o dst ' @

The first (tension) term establishes an equidistribution of points
along the resulting curve whereas the second (stiffness) term
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ensures against large curvatures. Finally, E.,; is the external energy
which pulls the snake towards the desired object boundaries.

A very popular extension of the gradient field is the gradient
vector flow (GVF) originally proposed by Xu and Prince [36,37].
The technique replaces a “raw” gradient vector field derived from
the image edges by a vector field which minimizes a certain func-
tional which extends the large gradients far from the boundary and
smoothes the gradients caused by noise. The GVF is a solution of a
linear elliptic equation given by

UVV = (V = Vf)IVf* =0, (3)

where Vfis the gradient field derived from the edge map of the im-
age. For instance, f = |VI|, where I is the gray level of the edge map. A
variety of edge detectors such as the Canny or Sobel detectors can
be applied to evaluate |VI|.

Eq. (3) is the Euler equation for the following functional

u / / (42 +12 + 27 + 02 dxdy + / VPRV - V) dxdy. ()

The first integral produces a smoothly varying vector field V = (u(x,
y), Ux,y)), while the second integral encourages the vector field to
approach Vf where |Vf] is large. Furthermore, Eq. (3) is solved by
treating V as a function of a pseudo-time and by performing numer-
ical iterations as follows:

n
V=V (WY - (V= VIVEP) (5)
where n is the iteration number and 7’ is the iteration parameter
(the pseudo time step). Note that, iterations (5) can be interpreted
as solving numerically a heat equation given by

W UV — (v~ TP ©)

However, the uniform diffusion p often produces excessive
smoothing. Therefore, Xu and Prince [38] extended the GVF tech-
nique by introducing spatially varying coefficients to decrease
the smoothing effect, namely,
ov

ot~ 8UVFIV?V = h(Vf)(Vf = V) =0. ™

The improved version of the GVF is called the generalized gra-
dient vector flow (GGVF). The weighting functions g and h depend
on the gradient of the edge map so that in the proximity of large

gradients g gets smaller whereas h becomes larger. In [14] the fol-
lowing diffusion and “attraction” functions have been proposed

g(IVfl) = e VO, h(Vf]) =1 - g(|Vf]), (8)

where K is a calibration parameter.
Introduce a multi-feature diffusion g as follows:

n
*HFi(Si)

g(s1,2,...,5,) =e =0 | o)

where s is the normalized feature vector: 0 <'s; < 1 and F; are non-
negative monotone increasing score functions such that F;(0) > 0
and F;(1) > F;(0), where Fi(1), F{0) show the relative importance
of the feature i. Note that if F;(0) = 0, F; works like logical “and”,
so that if s; is close to zero [[I_,F; is also close to zero which in turn
invokes large diffusion. Therefore, if F;,(0) = 0, the feature s; must be
present at the boundary so that []} F;#0.

On the other hand if F(0) > 0, it means that the feature may not be
present at the boundary given that other features are prominent.

We consider two features: the local direction of the vector field
sp and the magnitude of the gradient sy,. In other words

g(5M75D) — e*FM(SM)FD(SD)7 (‘10)

where sy, Sp is the magnitude and the direction score of the vector
field respectively and Fy;, Fp are the corresponding score functions.

Note that Fy;, Fp must be monotone decreasing functions. More-
over, defining the score functions at s = 0 is important. For instance
if Fy(0) = 0 than this point is not considered as the boundary point
irrespectively of the second feature. On the other hand, if
Fy(0) = a >0 then if the second feature is strong, the combination
of features (10) can still detect the boundary.

3. Preprocessing with the hierarchical fuzzy C-mean clustering

Preprocessing is a crucial part of the snake-based segmentation.
It is well known that without an appropriate filtering and further
preprocessing, the snake based segmentation is usually unsuccess-
ful. First, we apply the classical Lee [54], Frost [55] or Kuan [56] fil-
ters which work equally good for our particular application. The
filters are based on the balance between straightforward averaging
in homogeneous regions and the leaving the image intact where
edges and point features exist. This balance depends on the coeffi-
cient of variation inside the moving window. Noise reduction is fol-
lowed by quadratic contrast enhancement [68].

Next, we partition the image using the hierarchical C-mean
clustering algorithm based on the dendogram. The algorithm is
similar to hierarchical clustering [69]. First, the top down approach
is applied in such a way that the clusters with large ratio of the be-
tween-class/within-class variance called the F-ratio were kept
undivided whereas other clusters are allowed to be split. The
resulting configuration is fed to the bottom up procedure which
define the final set of clusters. In this case the clusters with high
F-ratio are not allowed to be merged. Our numerical experiments
show that this modification of the standard clustering approach
works very well on the US images.

As an introductory example consider the accuracy evaluation of
the GGVF applied to a sample US tumor shown in Fig. 1. The edge
maps obtained by the Canny edge detector with and without the
proposed clustering are shown in Fig. 1(b) and (c) respectively.
Clearly, the quality of edge map (b) is inappropriate whereas the
edge map (c) is acceptable. The results of accuracy evaluation in
Table 1 are given in terms of a Hausdorff distance (H; and H,
respectively, see definitions of the Hausdorff distance in Section 6).
The parameters of the standard GGVF were hand tuned to achieve
possible accuracy.

Table 1 shows that the accuracy of a segmentation applied to
the preprocessed image exceeds the accuracy obtained with the
raw image by 50% (47 and 96%). The number of snake iterations
after the preprocessing decreased considerably as well.

We tested the proposed preprocessing against other popular
methods such as the region growing, morphological operations
and the adaptive Otsu threshold. For the majority of the US images,
the hierarchical clustering can be adjusted in such a way that it
works slightly or even considerably better.

4. The magnitude score

Recall that the diffusion coefficient (10) is given by

g(5M7SD) — e‘FM(SM)FD(sD)

where sy, sp is the magnitude and direction score of the vector field
respectively and Fy, Fp are the corresponding score functions. The
conventional diffusion coefficient used by GGVF is given by

g(sm) = e~ ¥, where K is a single tuning parameter. Our model em-
ploys a rational function Fy(su) = — L5, where K(sy) is a monotone
Hermite cubic spline such that K(sy) >0, K'(sy) < 0, Vsy. We will
call this approach the dynamic - K since the coefficient is
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(a) sample image of the breast tumor
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(b) preprocessed image

(c) edge map of the original image

(d) edge map of the preprocessed image

Fig. 1. Hierarchical fuzzy C-mean preprocessing.

Table 1
Accuracy of the COFFA-GGVF snake with and without proposed preprocessing.

Method/criterion Without, preprocessing the best K = 0.06

Preprocessing

GGVF, K=0.11 Adaptive K + GGVF The proposed method
TP 62.6310 98.3132 98.3756 98.6841
H, 6.7569 3.9621 3.6815 3.2559
H, 2.9162 2.4632 2.3645 2.3336
# of snake iterations 170 135 90 65

automatically evaluated for every image and changes depending on
the position of the pixel.

The polynomial is generated using significant clusters of the
edge map. The clusters are generated by the standard fuzzy C-
mean method. Usually, the algorithm automatically generates four
clusters corresponding to background, noise, shadows and the
boundary of the tumor. The centroid of each cluster is selected as
the representative of the cluster and the corresponding Hermite
polynomial is constructed so that Fy(s;) = {;, where ; are selected
manually. However, if the cluster of shadows is not well defined,
only three clusters are generated. Finally, Fy(0) = 0. Therefore, if
gradient of the edge map is equal to zero, the diffusion reaches
its maximum g(sy;,0) = 1. The Hermite polynomial is the monotone
piecewise cubic Fritsch-Carlson spline [67] constructed by using
the slopes of the secant lines between the successive points and
adjusting the slopes to ensure monotonicity. After the preprocess-
ing, the evaluation of the interpolated spline is equivalent to that of
the standard Hermite spline. An introductory example in Fig. 2
demonstrates the benefits of the proposed approach applied to a
synthetic “tumor” in Fig. 2(a). Fig. 2(b)-(d) show the best contour
obtained on the vector field after 1000 GGVF-iterations for K= 0.1,
0.2 and 0.3. The resulting snake is very sensitive to the K-varia-
tions. Even a small deviation from the best choice of the parameter
K in Fig. 2(d) (compare K=0.1 and K =0.12) leads to a substantial
inaccuracies (Fig. 2(b)-(d)). As opposed to that, the solution ob-
tained by using the dynamic (adaptive) K does not require any trial
and error runs (Fig. 2(f)). Moreover, our forthcoming experiments
show that GGVF equipped with the dynamic K usually converges

to a meaningful solution whereas the exponential diffusion often
destroys the boundary of the desired object.

5. The direction score

This section introduces a new modification of the Continuous
Orientation Force Field Analysis (COFFA) [49] to generate the direc-
tion (orientation) score. Next, we show how the score can be incor-
porated into GGVF (10). Recall that at the boundary of the object
the vector field consists of antiparallel vectors. In this case the dif-
fusion coefficient g(sp,sy) must be small and the “stopping coeffi-
cient” h(sp,sy) must be large. As opposed to that, parallel vectors
corresponding to a background should entail large diffusion, so
that small noise is smoothed and the large gradients along the
boundary propagate through this area. COFFA measures a devia-
tion from an ideal anti-parallel position. The measure is then used
to generate a score vector. In order to capture the direction along
which the vectors are aligned the most, the algorithm employs a
rotating window. For each orientation of the window the vector
field is interpolated into the corners of the window (Fig. 3).

Next, ¢(0,,0,) is the deviation of the vectors at the two oppos-
ing corners from the direction corresponding to the orientation of
the window. The closer the two vectors are to the prescribed direc-
tion the greater is ¢(04,0).

The maximum response ¢(61,6-,) shows how close to the anti-
parallel position the vector field is in the locality of the candidate
boundary point. In order to construct the membership function
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(a) original image

(e) GGVF, K=0.12

(f) GGVF, dynamic K

Fig. 2. Adaptive (dynamic) K vs. the exponential diffusion.

s i
A
o—»vo I
0,(8,.98,)
(a) (b)

Fig. 3. (a) The direction score as the vector alignment measure (b) the rotating
window.

®(61,62) we use two dimensional interpolation techniques with a
few control points. The measure ¢(01,02):([0,27] x [0,2%]) — [0,1]
is constructed on a triangle {(0,%), (¢,%), (¢, n)} using interpolat-
ing points at the corners and in the middle of each side of the tri-
angle. The following conditions at the interpolating points are
used:

19
w

o0.m=1 o(3.m) =0 o(3.5) =4
NER TR

where o and j are the design values (see Fig. 4(a)-(f) respectively).

Suppose that ¢(0,3%) =« = 0.5 (Fig. 4(d)). It means that the
measure of position (d), deviating from the ideal position by %, is
50% of the what we assign in the ideal case when the deviation
is zero.

’
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Fig. 4. (a)-(f) The standard positions.

Furthermore, the six positions define a quadratic polynomial gi-
ven by

@(91,92) = 9% + ay010, + (1305 + a401 + as0, + ag. (11)

Once coefficients a; are evaluated, ¢(6,,6,) is extended to
[0,27] x [0,27] symmetrically, thus, becoming a piecewise qua-
dratic function.

Note, that if « = g =1, then (11) becomes a bilinear function gi-
ven by (1 —26,)(1 — 26,). Furthermore, ¢(61,06-) applies to rotating
window W, (Fig. 2) to produce a sequence of two dimensional
score vectors s, = (¢, ¢2),, where y is the rotation angle.

The vectors are normalized as follows s, pew = —>—. Finally, the

max|sy|*
directional score sp=min; [s;new|. We assume that the true
contour points form large clusters characterized by sp>1 — 4,
where ¢ is an appropriate threshold. Besides the true boundary
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points must belong to relatively large continuous segments,
whereas the false contour points belong to short segments. Conse-
quently, appropriate edge detection methods such as [42-44] can
be applied.

COFFA can be applied in the iterative way as follows. First, the
GGVF is applied to the raw gradient field of the edge map Vf to ob-
tain the vector function V(x,y) = (u(x,y), Ax,y)). Next, we measure
the COFFA score sp(x,y) and run an iterative improvement of sp
by obtaining a new the vector function V(x,y). However, using
the iterative COFFA-images slows down the algorithm. Besides,
this procedure may lead to numerical instabilities. This version of
the algorithm calculates sp only once and uses the corresponding
directional score in the subsequent calculations. The score-func-
tion Fy(sy) is non-linear and is based on an adaptive polynomial
interpolation. An introductory example in Fig. 5 illustrates the ben-
efits of the proposed approach. The standard GGVF snake applied
to the image depicted in Fig. 5(a) with K= 0.3 generates an incor-
rect boundary in Fig. 5(b). However, COFFA-GGVF applied with
the same K converges to correct geometries of the object in

Fig. 5(c).

6. Numerical experiments

This section presents numerical experiments tested on a ground
truth contours obtained from a series of breast tumor US images.
The ground truth was hand-drawn by leading radiologists with
Queen Sirikit Center for Breast Cancer of Bangkok [85]. The accu-
racy is defined as a percentage of true positive (TP) points with
the reference to the true boundary. A contour point is considered
to be a true positive point if a point in the ground truth image be-
longs to the true contour. The accuracy is also evaluated in terms of
the Hausdorff distance (H;) given by

disty, (X,Y) = max{r[rlleaxxrglelpﬂa - bj|, rglg{xrglelxnua - bl)), (12)

where || || denotes the Euclidian distance, X the ground truth con-
tour and Y the resulting contour. The averaged Hausdorff distance
(H3) is obtained from (12) by replacing the internal maximum by
averaging. In order to obtain a dimensionless estimate (Hs) the
Hausdorff distance (12) is divided by the length of the true contour
Ly as follows

disty, (X, Y)

disty, (X, ¥) = =2
Y

g (13)
where the normalizing coefficient & =1000.0.

Note that H, is not a distance in a rigorous mathematical sense,
because it does not satisfy the triangle inequality. However, exper-

(a) original image

(b) GGVF, K= 0.3

iments [78] show that H; is the best for matching objects based on
their edge points.

Finally, we evaluate the robustness of the method by its numer-
ical convergence. Let T,, be the number of true positives and let Y,
be the snake contour at iteration n. If for some n and kg

|Tn — Tn) < & and |dist,_,1 (Ynik, Yn) — disty, (Yni1, Ya)|

<&y, Vk<ko (14)

we will say that the method converges. Here, kg is the number of
iterations during which the accuracy estimates are stable and er,
ey the required tolerance [51].

Denote the proposed method by COFFA-GGVF-DYK, where DYK
stands for the dynamic choice of K combined with Hermite inter-
polation proposed in Section 3.

We test the proposed method against the classical GGVF as well
as against recent modifications of GGVF, namely, the Poisson gra-
dient vector flow (PGVF), INgs.-GVF vector flow, convolution vector
flow (CVF) and dynamic directional gradient vector flow (DDGVF)
explained in Introduction.

Example 1 (Low contrast malignant tumor). Fig. 6(a) displays the
original US image. Fig. 6(b) shows the image after
contrast enhancement. Furthermore, we show only contrast
enhanced images, although in order to prove the efficiency and
robustness our method was run on the original low contrast
images. The ground truth images such as in Fig. 6(b) were outlined
leading radiologists with the Queen Sirikit Center for
Breast Cancer of King Chulalongkorn Memorial Hospital, Bangkok
Thailand.

The results obtained with GGVF and several versions of the pro-
posed COFFA-GGVF are shown in Fig. 6(c) and (d). The numerical
evaluation of the accuracy of the extractions is given in Table 2.
The accuracy is estimated in terms of true positives (TP) and the
Hausdorff distance Hy, H, and Hs introduced above.

Table 2 indicates convergence of the methods and the best
accuracy throughout 5000 iterations. Since the conventional GGVF
often does not converge, the best accuracy was recorded at some
transitional iteration step. However, a criterion to terminate the
GGVF iterations if they do not converge in the classical sense is
an open problem. Therefore, the GGVF accuracy is actually overes-
timated. Clearly, our proposed method outperforms GGVF. First of
all, it always converges. Second, COFFA-GGVF-DYK with the adap-
tive K outperforms GGVF with the best K found by the trial end er-
ror method. The adaptive method does not require training and
adapts K automatically. The adaptive K employs a monotone Her-
mite spline interpolation displayed in Fig. 7.

(d) COFFA-GGVF ,K=0.3

Fig. 5. COFFA vs. the exponential diffusion.
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(a) original US image

(g) GGVF-DYK, preprocessing

(b) ground truth (contrast-enhanced image)
: .
;

H .liih / }

H
I H-,’T:x

(h) COFFA-GGVF-DYK, preprocessing

Fig. 6. Extraction results by the proposed method vs. standard GGVF.

The classical explicit numerical scheme was employed which
converges if 4gmax7T <1 [37]. This condition was satisfied for every
experiment. However, GGVF iterations may diverge when g(|Vf]) is
too small, that is, the parabolic Eq. (7) degenerates. This case re-
quires special numerical procedures for parabolic equations with
singularities [70]. For instance, if g(|Vf]) =0, (7) is no longer para-
bolic. Therefore, boundary conditions (required for uniqueness of
the solution) cannot be satisfied.

However, the proposed polynomial interpolation does not
change as fast as the exponential diffusion. Besides we freeze the
numerical solution when g(|Vf]) is close to zero. These procedures

help to maintain the numerical stability and provide the conver-
gence even when the simple explicit scheme is employed.

Finally, in many cases the accuracy of GGVF is very sensitive to
variations of K. Consider a graph of TP vs. K in Fig. 7. The maximum
accuracy TPha.x =89% is achieved at K=0.185. Let us define an
acceptable range as {K:TP < 0.99TPn.}. Then K e [0.17,0.225]
with the average accuracy of 88% within this interval. It is a rela-
tively large interval, however, the accuracy drops abruptly when
K<0.17 (Fig. 8). For instance, for K=0.16 the accuracy is only
83%. The adaptive procedure adopted by COFFA-DYK increases
the variability of the permissible diffusion g(s), thus, resulting in
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Table 2
Example 1. Accuracy and convergence of GGVF and COFFA-GGVF-DYK.
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Criterion/method No preprocessing GGVF + best K=0.13

Preprocessing

GGVF, K varies GGVF-DYK COFFA-GGVF-DYK
Best K=0.18 Acceptable range: 0.17-0.22
TP 39.1975 89.1901 88.0814 91.3580 93.0329
H, 23.2402 8.1519 8.9413 6.1855 5.1173
H, 9.1462 1.0329 1.0724 0.9059 0.7638
Hs 20.6927 1.9475 2.0220 1.8642 1.5716
Snake convergence Yes Yes Yes Yes Yes
GGVF convergence explicit scheme No No No Yes Yes
1 100, TP
K@) [\ e
80
0.5
60
Si
0 Y~ T
0 05 1 ©
0 20 40 60 80 100 120

Fig. 7. Adaptive K: the Hermite polynomial passes through the center of the
intensity clusters (black dots) corresponding to the background, noise, “shadows”
and the boundary.

K

2 M H
0.16 0.18 02 0.22 024 0.26

Fig. 8. Accuracy of GGVF vs. the diffusion coefficient K.

the same or even better segmentations with the reference to the
best GGVF performance.

According to Table 2 the best accuracy has been achieved by the
proposed method with the maximum Hausdorff error H; = 5.0 pix-
els and the average Hausdorff error H, ~ 1. It means that on aver-
age, the actual contour deviates from the true contour by only
1 pixel. Finally, H; = %5- where ¢=1000.0. Therefore, H; =1.4
achieved by COFFA-GGVF-DYK, indicates that the maximum
amplitude of the deviation of the resulting contour from the
ground true contour is 0.15% of the total length of the true contour.
Assuming that the tumor is round, the “radius” of the tumor
Ry = %, Therefore, the ratio ;’—X' =210.15% ~ 1%.

Consider segmentation results presented in Fig. 6(c)-(h).
GGVF—DYK and COFFA-GGVF-DYK generate star-like patterns
ideal for using the expanding snakes (Fig. 6(a)) whereas GGVF with
the best K=0.18 generates multiple stars (unwanted internal
boundaries). Finally, only COFFA-GGVF-DYK is able to resolve the
corner on the right side of the image (Fig. 6(b), (g) and (h)). The
adaptive diffusion coefficient is give in Fig. 7. The accuracy of GGVF
vs. the diffusion coefficient K is shown in Fig. 8. Consider the
accuracy (TP) vs. the iteration number in Fig. 9. Clearly the stan-
dard GGVF does not converge whereas the proposed method does.

Fig. 9. Convergence of the proposed method vs. the conventional GGVF: solid line -
GGVF, dashed line GGVF-DYK, dotted line COFFA-GGVF-DYK.

The accuracy of GGVF in terms of TP reaches its peak at 6th-9th
iteration. However, the diffusion destroys the boundary decreasing
the number of the true positives.

Example 2 (A malignant tumor. Complicated shape. High level of
noise). The tumor in Fig. 10(a) is characterized by concavities and
spikes which are usually hard to detect using a snake based
approach. However the results are similar to Example 1. Table 3
shows that COFFA-GGVF-DYK outperforms the standard GGVF
even for a hand-tuned K. Note that optimal K for GGVF for Example
2 is very different from K obtained in Example 1. The optimal
K =0.18 for the tumor from Example 1, however the best K=0.13
for Example 2. Moreover, the acceptable range in Example 1 and 2
is [0.17-0.22] and [0.12-0.13] respectively. The high variability of
optimal K in Figs. 7 and 11 means that in general it is not possible
to establish a single K for the GGVF model even by training the
model on a series of images. Nevertheless, the our proposed model
is parameter free. The dynamic K is established automatically and
varies from region to region.

Example 3 (Malignant tumor. Irregular non-round shape). The
method has been tested on a tumor having a non circular shape
shown in Fig. 12(a) and (b). This example shows an advantage of
COFFA with regard to a conventional edge map. The image has
been preprocessed by the Hierarchical Fuzzy C-mean Clustering
(Fig. 12(c). The Sobel edge detector and the COFFA applied the
image in Fig. 12(c) are displayed in Fig. 12(d) and (e) respectively.
COFFA image is characterized by a better visualization of the edge
at the boundary of the tumor. Since the visual comparison is sub-
jective, our final test is the accuracy of the resulting snake. The
worst and the best GGVF segmentation are shown in Fig. 12(f)
and (g) whereas COFFA-GGVF-DYK is displayed in Fig. 12(h).

The accuracy of segmentation is shown in Table 4.
COFFA-GGVF-DYK performs similarly to the standard GGVF for
the best K selected manually. The acceptable range is quite large
K=0.06-0.11 and the accuracy within the acceptable range does
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(e) GGVF-DYK, preprocessing (f) COFFA-GGVF-DYK

Fig. 10. Extraction results using the proposed method with the reference to the standard GGVF.
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Table 3
Example 2. Accuracy and convergence of GGVF and COFFA-GGVF-DYK.
Criterion/method No preprocessing GGVF + best K 0.09  Preprocessing
GGVF K varies GGVF-DYK  COFFA-GGVF-DYK
Best K=0.13  Acceptable range: K=0.12-0.134
TP 24.9165 88.0059 88.0050 88.2698 91.0236
H; 32.0278 7.0881 7.3531 6.6123 5.6857
H, 23.9605 1.3935 1.3939 1.3660 0.6766
Hs 13.4837 0.7841 0.7843 0.7687 0.3808
Snake convergence Yes Yes Yes Yes Yes
GGVF convergence explicit scheme  No No No Yes Yes

not change considerably. However, it does not overlap with the Example 4 (Sensitivity to initialization). The proposed method is
acceptable range from Example 1 and is very different from the less sensitive to the position of the initialization Contour and
acceptable range in Example 2. works much better that the conventional GGVF when the initial
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Fig. 11. Accuracy of GGVF vs. the diffusion coefficient K.

snake is far from the boundary. The test tumor and the ground
truth are shown in Fig. 13(a) and (b). The snake has been initialized
at the distance d = 5, 12, 32 pixels from the boundary measured by
using Hausdorff distance H;. The results for each initialization are
presented in Table 5.1, Table 5.2 and Table 5.3 respectively and in
Fig. 13(c)-(f).

Clearly, when the initial snake is close to the true boundary, the
performance of GGVF and COFFA-GGVF-DYK is excellent. For d = 5,
the accuracy is 99% in terms of true positives and 0.3 in terms of Hs.
Moreover, GGVF converges. Yet, increasing the distance leads to a

drastic decline in the accuracy of GGVF in all categories: TP, Hy,
H, and Hs. The noise which was not properly processed by the con-
ventional GGVF attracts the snake leading to huge errors. For d = 32
the best performance of GGVF is only 83% in terms of true positives
and the maximum deviation from the true contour reaches 29 pix-
els. However, the proposed method produces a consistent result of
99% true positives and the deviation measured by H; is of about
2.14 pixels.

Example 5 (Testing against recent modifications of GGVF). In this
example we test our techniques against the ground truth segmen-
tations and recent modifications of GGVF, i.e. Poisson gradient
vector flow-PGVF [71-73], mixed noise vector flow based on an
adaptive noise estimator INg-GVF [74] and the convolution vector
flow CVF [75]. A short description of each method is presented in
Introduction on page 6. The code for generation of the CVF fields
was generously provided by the author Li whereas INgs-GVF and
PGVF were replicated following [73,74].

The images include 3 synthetic sets (65 images each) character-
ized by different levels of noise and 48 real tumor images. The in-
put images are preprocessed by Gaussian smoothing, median
filtering and a speckle noise filter. Note that in Examples 1-4 we
compare the proposed method with the standard GGVF applied

(a) original image

( ¢) conventional edge map

" (2) GGVF, the best K=0.22

g
&

Zatan

Fig. 12. GGVF vs. COFFA-GGVF-DYK, Example 3.
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Table 4
Example 3. Accuracy and convergence of GGVF and COFFA-GGVF-DYK.
Criterion/method Non-Preprocessing GGVF + best k 0.11  Preprocessing
GGVF K varies GGVF-DYK  COFFA-GGVF-DYK
Best K=0.09  Acceptable range: K=0.06-0.11
TP 34.5065 97.7013 97.5448 98.3126 98.4703
H; 8.3768 5.0984 5.4194 4.8079 4.3071
H, 1.4893 0.4897 0.5240 0.4495 0.4163
H; 1.1360 0.3735 0.3997 0.3429 0.3176
Snake convergence Yes Yes Yes Yes Yes
GGVF convergence explicit scheme  No No No Yes Yes

(a) original image (b) ground truth

(e) GGVF, d=32 (f) COFFA-GGVF-DYK,d=32

Fig. 13. GGVF vs. COFFA-GGVF-DYK, Example 4.

Table 5.1
Example 5. Accuracy and convergence of GGVF vs. COFFA-GGVF-DYK, d = 5.
Criterion/method Preprocessing
GGVF, best K =0.009-0.01 GGVF-DYK COFFA-GGVF-DYK
TP 99.1028 99.1028 99.1905
H; 2.1225 2.1472 21217
H, 0.3223 0.3199 0.3088
H; 0.2027 0.2012 0.1942
Snake convergence Yes Yes Yes

GGVF convergence explicit scheme Yes Yes Yes
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Table 5.2
Example 5. Accuracy and convergence of GGVF vs. COFFA-GGVF-DYK, d = 12.

A. Rodtook, S.S. Makhanov/]. Vis. Commun. Image R. 24 (2013) 1414-1430

Criterion/method Preprocessing

GGVF, best K=0.08 GGVF-DYK COFFA-GGVF-DYK
TP 88.8755 99.1026 99.1905
Hq 23.1307 2.1680 2.1410
H, 1.4630 03218 0.3104
Hs 0.9201 0.2024 0.1952
Snake convergence Yes Yes Yes
GGVF convergence explicit scheme No Yes Yes
Table 5.3
Example 5.3. Accuracy and convergence of GGVF vs. COFFA-GGVF-DYK, d = 32.
Criterion/Method Preprocessing
GGVF, best K=0.09 GGVF-DYK COFFA-GGVF-DYK
TP 83.7552 99.1025 99.1903
H, 29.4658 2.1703 2.1461
H, 3.2775 0.3236 0.3221
Hs 2.0613 0.2034 0.2026
Snake convergence Yes Yes
GGVF convergence explicit scheme No Yes

BNG

mmﬂ <
m ™
wv wn

Fig. 14. Examples of synthetic (randomly generated) tumors.

with the best possible set of parameters hand-tuned individually
for each image. As opposed to that, Example 5 is a real situation
where the parameters of the segmentation methods are evaluated
by training.

The 195 (496 x 401) images of synthetic tumors were gener-
ated by using the oval shapes subjected to elastic deformations
[85] and trigonometric boundary noise (Fig. 14). 135 images
were used for training and 60 for testing. The complexity of
the segmentation problem was evaluated by the level of the
additive speckle noise (db). The images are characterized by a
low contrast measured by ¢ = “%-¢n = 0.27, where Gi,, Gou the
average grey level inside and outside the tumor. Note that the
proposed combination of a low contrast and a speckle noise in
the range 15-25db is a challenging problem for segmentation

methods. The average distance of the initial snake measured in
terms of Hausdorff distance is H; = 28.3 and H, = 16.0. The com-
peting methods have been trained with regard to the following
parameters:

— INgst-GVF: the size of the window to suppress the noise, the
regularization parameter and the diffusion coefficient of the
GGVF,

- PGVG: parameters of the GA (population size and mutation
rate) and the diffusion coefficient of the GGVF,

- CVF: the size of the convolution kernel, the design parameter of
the kernel, the threshold required to mix the convolution and
the gradient vector fields.
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Table 6
Accuracy of INgs-GVF, PGVF and CVF vs. the proposed method. Synthetic tumors.
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Noise/criterion/method INgs-GVF PGVF CVF COFFA-GGVF-DYK
PSNR =24 db % Images, TP > 80% 100% 100% 100% 100%
Average TP 97.4722 99.83% 99.81% 99.89%
Average H, 6.3956 5.1006 5.6978 4.5927
Average H, 2.0571 1.6657 2.1047 1.5827
PSNR =17 db % Images, TP > 80% 52.63% 78.90% 78.95% 100%
Average TP 85.71% 88.99% 92.24% 96.17%
Average H; 11.9572 9.9474 8.6094 4.7755
Average H, 3.4501 2.7706 2.1379 1.6064
PSNR =15 db % Images, TP > 80% NA NA 52.63% 84.21%
Average TP 86.23% 91.83%
Average H,; 14.9318 8.9325
Average H, 4.6069 3.3364
# Of training parameters 3 3 3 None

(a) synthetic image

(d) PGVF

() CVF

(f) COFFA-GGVF-DYK

Fig. 15. COFFA-GGVF-DYK vs. selected GVF methods, synthetic images.

COFFA-GGVF-DYK was applied without any training to the
same set of 60 testing images. The testing results are presented
in Table 6 which displays the percentage of testing images seg-
mented with the accuracy TP > 80%. The actual accuracy is given
in terms of TP, H; and H,. For the noise of 24 db INgs-GVF, PGVF,
CVF and COFFA-GGVF-DYK perform equally well in terms of TP,
however, the proposed method has a slight advantage in terms
of H; and Ha. As far as the medium speckle noise of about 17 db
is concerned, the COFFA-GGVF-DYK is a definite winner with an
overwhelming advantage: 100% of accurate segmentations vs.
79% produced by CVF and PGVF and only 52.5% by INgs-GVF
(Fig. 15). The noise of about 15 db disables the training procedures
for INgs-GVF, PGVF (symbol NA in Table 6). In other words the
training fails to produce statistically significant average training
parameters. The accuracy of CVF drops down to 53%, however,
COFFA-GGVF-DYK segmentation is still successful for 83% of the
images with the accuracy of about 91% TP and only 3 pixel average
H,. Finally, PGVF requires a binary image produced by the GA.
Therefore, it is sensitive to the Gaussian smoothing. An extensive
blurring produced by the Gaussian often breaks down the GA

Table 7

COFFA-GGVF-DYK vs. INgg-GVF, PGVF and CVF on real images.
Criterion/method INEse- PGVF CVF COFFA-GGVF-

GVF DYK

% Images, TP > 80% 64% 64% 71% 79%
Average TP 87.58% 89.86% 89.07% 92.06%
Average H, 11.5860  8.1425 8.2573 5.1706
Average H, 2.9513 23916 2.4074 1.5099
# Of training parameters 3 3 3 None

designed to connect the edges. Besides, using the GA, comes at the
cost of a factor of 8-10 slowdown in runtime performance com-
pared to COFFA-GGVF-DYK.

Table 7 shows the accuracy of the INg,~GVF, PGVF, CVF and
COFFA-GGVF-DYK applied to 48 images of the real breast tumors.
30 images were used for training and 18 for testing. The proposed
method displays a clear advantage in terms of correctly segmented
tumors and the accuracy measured by TP, H; and H, (see also
Fig. 16). As before, COFFA-GGVF-DYK was applied without any pre-
liminary training or hand-tuning of the parameters.
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(a) Original image

(d) PGVF

(b) ground truth

(e) CVF

(f) COFFA-GGVE-DYK

Fig. 16. COFFA-GGVF-DYK vs. selected GVF methods, real images.

7. Conclusions

Based on the adaptive multi feature scheme, the proposed
COFFA-GGVF-DYK snake shows much promise as applied to seg-
mentation of the breast tumors. The method generates the same
or even better accuracy with the reference to the standard GGVF
method equipped with the best set of parameters found individu-
ally for a particular image. As opposed to that the proposed method
is parameter free and does not require any calibration with regard
to the coefficients involved in the smoothing and the stopping
term. The numerical experiments show excellent results when ap-
plied to the initial contour positioned far from the true boundary.
Comparison with recent modifications of GGVF displays consider-
able improvement in the segmentation accuracy.
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