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Phase Portrait Analysis for Multiresolution Generalized Gradient
Vector Flow

Sirikan CHUCHERD†a), Member, Annupan RODTOOK††,
and Stanislav S. MAKHANOV†, Nonmembers

SUMMARY We propose a modification of the generalized gradient
vector flow field techniques based on multiresolution analysis and phase
portrait techniques. The original image is subjected to mutliresolutional
analysis to create a sequence of approximation and detail images. The
approximations are converted into an edge map and subsequently into a
gradient field subjected to the generalized gradient vector flow transforma-
tion. The procedure removes noise and extends large gradients. At every
iteration the algorithm obtains a new, improved vector field being filtered
using the phase portrait analysis. The phase portrait is applied to a win-
dow with a variable size to find possible boundary points and the noise.
As opposed to previous phase portrait techniques based on binary rules our
method generates a continuous adjustable score. The score is a function
of the eigenvalues of the corresponding linearized system of ordinary dif-
ferential equations. The salient feature of the method is continuity: when
the score is high it is likely to be the noisy part of the image, but when
the score is low it is likely to be the boundary of the object. The score is
used by a filter applied to the original image. In the neighbourhood of the
points with a high score the gray level is smoothed whereas at the boundary
points the gray level is increased. Next, a new gradient field is generated
and the result is incorporated into the iterative gradient vector flow itera-
tions. This approach combined with multiresolutional analysis leads to ro-
bust segmentations with an impressive improvement of the accuracy. Our
numerical experiments with synthetic and real medical ultrasound images
show that the proposed technique outperforms the conventional gradient
vector flow method even when the filters and the multiresolution are ap-
plied in the same fashion. Finally, we show that the proposed algorithm
allows the initial contour to be much farther from the actual boundary than
possible with the conventional methods.
key words: phase portrait analysis, multiresolution analysis, medical im-
age processing

1. Introduction

Among the most promising techniques for extraction of
complex objects from digital images are active contours or
snakes, originally introduced by Kass et al. [1]. The snakes
have been used to locate the object boundaries in various
applications of medical image processing with a different
degree of success. In particular, they have been successfully
applied to segmentation of abnormalities in the images of
the human heart, liver, brain, breast, etc [2]–[12].

A variety of improvements to Kass’s method have been
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proposed [13], [14], where edge-based external forces, en-
hancing the effect of image edges have been introduced to
overcome the sensitivity to the initial conditions and the
noise.

The so-called T-snakes [15] and their improvements
such as the dual T-snakes models [16] are able to re-
parameterize the snakes and use multiple contours. An in-
trinsic internal force based on regularized contour curva-
ture profile was introduced in [17] and [18]. A grammatical
framework [19] presents different local energy models and a
set of allowable transitions between these models. The sec-
tored snakes [20] deform the contour under constraints de-
rived from a priori knowledge of the object shape. Fourier
snakes [21] evolve to a prescribed shape defined by a tem-
plate. Region-based image features are combined with the
edge-based features incorporated in the external forces [22],
[23]. The snake based segmentation can be also performed
starting from multiple seeds by iterative boundary deforma-
tion and region merging [24].

A competing approach called the level set method [25]
is based on the ideas proposed by Osher and Sethian [26] to
use a model of propagating liquid interfaces with curvature-
dependent speeds.

The level set method combined with the contour energy
minimization resulted in a variety of the so-called geodesic
deformable models [27]–[31]. Siddiqi et al. [28] incorpo-
rate an area function and the edge function into the length
minimization framework to strengthen the contour attracting
force. Rochery et al. [32] proposed a parametric model for
higher-order active contours, in particular, quadratic snakes,
for extraction of linear structures like roads. However, the
level set representation makes it difficult to impose arbitrary
geometric or topological constraints on the evolving con-
tour via the higher dimensional hyper surface [15]. Besides,
the level set models may generate shapes having inconsis-
tent topology with respect to the actual object, when applied
to noisy images characterized by large boundary gaps [33]
requiring exhaustive optimization to accomplish reasonable
run times [34].

Further improvements lie along the lines of processing
the underlying vector field rather than modifying the snake
model itself. A number of popular codes are based on a
gradient vector flow (GVF) method proposed by Prince and
Xu [35], [36]. A “raw” gradient vector field derived from the
image edges is replaced by a vector field which minimizes
a certain variational functional. The functional is designed
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to extend the large gradients far from the boundary, smooth
the gradients caused by noise and speckles while keeping
gradients attached to strong edges. The generalized gradient
vector flow field (GGVF) [37] extends GVF by introducing
an analogy with non-uniform diffusion. Some variations of
this idea are given in [38], [39].

The GGVF-preprocessed images often allow the
snakes to avoid gradients produced by the speckles and the
tissue-related edges. However, when the noise related gradi-
ents are comparable with the boundary gradients, the diffu-
sion smoothes the false and the true contour points equally.
Although on average GGVF produces a smoother vector
field it may also lead to undesirable effects nearby concave
boundaries. Besides it may generate such unwanted config-
urations as the attracting or the repelling stars. In this pa-
per, we propose a special numerical treatment of the GGVF
equations to improve the accuracy and convergence of the
snake subjected to the resulting vector field. Our modifi-
cation called phase portrait orientation force field analysis
(PPA) inspired by discrete force field analysis proposed in
[40] uses intermediate vector fields obtained during the nu-
merical iterations to construct an improved edge map.

PPA is based on a numerical measure of a strong edge,
applied in a rotating window of a varying size. This part
of the algorithm is similar to oriented filtering (the oriented
Gabor filter, the oriented LoG filter, etc). However, the pro-
posed method differs from the conventional filters. PPA pro-
duces a score which measures the similarity of the vector
field in the particular window to the boundary pattern. The
boundary configuration is represented by the attractive or
repelling line (node saddle case I and II, see Fig. 1) char-
acterized by certain eigenvalues of the corresponding linear
flow matrix. The noise is represented by the attracting and
the repelling nodes or stars (see Fig. 1). Since the gradient
vector field is rotation-free, the local flow is limited to above
patterns whereas patterns like “focus” or “center” do not ap-
pear.

The idea of using the phase portrait for image analy-
sis is not new (see, for instance [41]). It has been applied to

Fig. 1 Phase portrait flow pattern.

the fingerprint identification [42]–[44], texture analysis [45],
satellite imagery [46], [47] and many other image process-
ing applications. In particular the phase portrait techniques
have been applied to detect architectural distortions in mam-
mogram breast images [48]. However, to the best of our
knowledge the phase portrait analysis has not been applied
in a context of multiresolution active contours for generation
of improved edge maps. Besides, as opposed to the majority
of the phase portrait techniques based on “if-then” rules, we
propose a continuous measure derived from the correspond-
ing vector flow matrix.

The continuous measure makes it possible to adapt the
edge map at each resolution level to obtain an improved
GGVF. The approach has been tested using synthetic low
contrast images. It offers a simple computational scheme
and leads to a higher segmentation accuracy. Our numeri-
cal experiments on numerous images show similar or better
accuracy but at the same time much less sensitivity to the
snake controlling parameters and the initial position of the
contour as compared with the conventional GGVF, multires-
olution GGVF snakes and multiresolution snakes endowed
with conventional filters. Finally, our numerical experi-
ments with medical ultra-sound breast tumor images show
that the proposed method is more appropriate than the above
mentioned methods as applied to segmentation of the breast
tumors.

2. Snakes in the Framework of the Gradient Vector
Flow Technique

An active contour or snake parametrically defined as X (s) =
(x (s) , y (s)) , s ∈ [0, 1] is a curve which evolves inside the
image domain so that it attaches itself to the desired object.
The evolution of the snake is governed by Euler equations
corresponding to an energy functional defined by

E =
∫ 1

0

1
2

(
a
∣∣∣X′(s)

∣∣∣2 + b
∣∣∣X′′(s)

∣∣∣2) ds

+

∫ 1

0
Eext (X (s)) ds, (1)

where Eext is an external force which moves the snake to-
wards the object, for instance, it could be a smoothed ver-
sion of the gradient vector field. The minimum of the
functional is supposed to be a curve which approximates
a boundary of the object of interest. Although this claim
has not been proven theoretically for realistic assumptions
such as the presence of noise, false objects, speckles, low
contrast areas etc, a strong rationale behind it is variational
functional (1).

Popular gradient vector flow techniques (GVF) origi-
nally proposed by Prince and Xu [35], [36], replaces a “raw”
gradient vector field Eext (X (s)) derived from the image
edges by a new vector field. The vector field is obtained
by extending the large gradients far from the boundary and
smoothing the gradients caused by noise. The GVF is a min-
imizer of the following functional
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μ

∫∫
|∇u|2 + |∇v|2 dx dy

+

∫∫
|∇ f |2|V − ∇ f |2 dx dy, (2)

where μ is the diffusion coefficient.
The first integral produces a smoothly varying vector

field V = (u(x, y), v(x, y)), while the second integral encour-
ages the vector field to approach ∇ f , if |∇ f | is large.

The Euler equation for functional (2) is given by

μ∇2V − (V − ∇ f )|∇ f |2 = 0, (3)

Equation (3) can be solved by treating V as a function
of time and solving

∂V
∂t
= μ∇2V − (V − ∇ f )|∇ f |2. (4)

The steady-state solution (as t → ∞) of the linear
parabolic equation above is the desired solution of the Euler
equation (3). Equation (4) is discretized with regard to the
time and space variables and solved numerically. The time
steps are interpreted as numerical iterations.

Furthermore, Xu and Prince [37] extended the GVF
technique by introducing spatially varying coefficients to de-
crease the smoothing effect, namely,

∂V
∂t
− g (|∇ f |)∇2V − h (|∇ f |) (∇ f − V) = 0. (5)

The improved version of the GVF is called the general-
ized gradient vector flow (GGVF). The weighting functions
g and h depend on the gradient of the edge map so that in
the proximity of large gradients g gets smaller whereas h
becomes larger. In [37] the following weighting functions
have been proposed

g (|∇ f |) = e−(|∇ f |/K), h (|∇ f |) = 1 − g (|∇ f |) , (6)

where K is a calibration parameter.
However, the GVF may produce a vector field, where

the gradients are not extended far enough from the actual
boundary of the object. On the other hand, the true bound-
ary can be partially or even entirely destroyed by excessive
smoothing when μ or the time step are too large.

The smoothing effect depends on the diffusion coef-
ficient μ (or K in case of (6)) and the iteration step. If a
conventional stopping criteria based on the proximity to the
steady state solution produces an “over-smoothed” solution,
the user must modify the diffusion coefficient or interrupt
the iterations earlier. However, interrupting the iterations
too early may lead to false boundaries and artifacts.

The proposed PPA treats this problem by using local
configurations of the vector field. If the local pattern resem-
bles the noise the algorithm applies additional smoothing. If
PPA detects a possible boundary the smoothing (diffusion)
becomes small, so that this part of the vector field remains
unchanged. Our experiments show, that the same set of pa-
rameters produces a much better accuracy when PPA is ap-
plied. As a matter of fact, since PPA adapts the diffusion
automatically, it is often the case that the dependence of the
accuracy on K is substantially reduced.

3. Orientation Force Field Analysis and Phase Portrait
Techniques

The main idea of the discrete orientation force field analy-
sis (DOFFA) proposed by Hou and Han [40] is that the true
boundary vectors must face each other along a certain direc-
tion. Therefore, DOFFA introduces a 3×3 sampling window
around the candidate boundary point and analyses the direc-
tions of the vector field in this window. This procedure is
illustrated in Fig. 2.

Positions (1)–(4) and sixteen positions (5)–(8) (includ-
ing rotations and the symmetric positions) in Fig. 2 consti-
tute the basic configuration of DOFFA. However, DOFFA
introduces many other positions such as the broken point
(9), (10) and others. It is not clear whether the set of the po-
sitions is complete. Of course, for the real image the vectors
are not precisely anti-parallel. Therefore, the definition of
approximately anti parallel vectors must be based on a cer-
tain threshold of the angle between the vectors. This thresh-
old is often hard to find.

Furthermore, the major drawback of DOFFA is that it
is hard to extend to large windows. Even for a window 5× 5
possible boundary configurations are hard to introduce and
interpret.

In this paper, we introduce a modification of DOFFA
based on phase portrait analysis combined with wavelet
multiresolution analysis (filter bank).

The phase portrait analysis makes it possible to intro-
duce a continuous measure indicating the boundary point,
regular point or noise based on the eigenvalues of the linear
flow matrix. The method applies to any size of the sampling
window and works well combined with GGVF iterations.

Recall that the linear system model represents the un-
derlying vector field V as a solution of a linear system
dv
dt = Av. Matrix A =

(
a b
c d

)
can be obtained by a lin-

ear least square method applied in the sampling window to

minimize ||V − A

(
x
y

)
|| with regard to a, b, c and d.

Fig. 2 Basic vector configurations for the discrete orientation force field
analysis (DOFFA).
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Table 1 Types of 2D critical points.

Pattern Eigenvalues
Center R1 = R2 = 0 I1 = −I2 � 0
Attracting Focus R1 = R2 < 0 I1 = −I2 � 0
Repelling Focus R1 = R2 > 0 I1 = −I2 � 0
Attracting Node R1 � R2 < 0 I1 = I2 = 0
Attracting Star R1 = R2 < 0 I1 = I2 = 0
Repelling Node R1 � R2 > 0 I1 = I2 = 0
Repelling Star R1 = R2 > 0 I1 = I2 = 0
Saddle Point R1 > 0,R2 < 0 I1 = I2 = 0
Node-Saddle 1 R1 > 0,R2 = 0 I1 = I2 = 0
Node-Saddle 2 R1 < 0,R2 = 0 I1 = I2 = 0
Pure Shear R1 = R2 = 0 I1 = I2 = 0

Fig. 3 Ultrasound breast tumor image.

There are eleven basic linear flow patterns character-
ized by the eigenvalues of matrix A (see Table 1 [49], where
λ1, λ2 are the eigenvalues, Ri = Reλi, Ii = Imλi see also
Fig. 1). Since we apply our classification to the vector field
subjected to smoothing and boundary enhancing effects of
GGVF. The most prominent patterns are attracting/repelling
stars (noise), node-saddle (boundary) and the pure share
(regular point). These configurations can be explained con-
sidering a physical analogy of the heat diffusion simulated
by Eq. (4) and the resulting vector field. It is clear that the
noise generates an isolated source (sink) of heat. In terms of
the corresponding vector field it is an attracting (repelling)
star. In turn, a boundary of the object corresponds to a
source (sink) distributed along the corresponding curve. In
this case PPA detects an attracting or repelling node-saddle.
Finally, a slow varying gray level (background) corresponds
to “shear ”.

Consider the case of ultrasound breast tumor images.
The tumors are represented by dark spots at the lighter noisy
background (see Fig. 3). Usually, the tumor also includes,
small and large group of lighter pixels representing noise.
The boundary of the tumor is typically ill-defined, fuzzy
and is often hard to evaluate visually. In this case the most
frequent patterns are: attracting star, attracting saddle node
(boundary) and the shear (a regular point).

Our classifier is given by

C(W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

noise, min(|λ1 |,|λ2 |)
max(|λ1 |,|λ2 |) > Δ1,

|λ1| > Δ2 or|λ2| > Δ2

boundary, min(|λ1 |,|λ2 |)
max(|λ1 |,|λ2 |) ≤ Δ1,

|λ1| > Δ2 or|λ2| > Δ2

regular point,
|λ1| ≤ Δ2 or|λ2| ≤ Δ2

(7)

where W is the window around the pixel and Δ1, Δ2 the
thresholds evaluated by training. The classifier runs for var-
ious sizes of the window in increasing order.

Finally, the edge map used to iteratively apply the
GGVF is modified as follows. If C(W) = “noise”, then the
corresponding window gets smoothed by an appropriate fil-
ter, if C(W) = “boundary”, the gray level of the edge map
gets increased. Finally, if C(W) = “regular point”, the gray
level remains the same. The entire iterative algorithm is pre-
sented in the next section.

4. Iterative Algorithm

The algorithm is based on the above GGVF -PPA snake
combined with multiresolution analysis (MRA) or filter
bank. The filter bank is based on the Daubechies wavelets
D4 [50]. The number of the multiresolution levels is hand-
tuned for the best performance. Typically 2-3 multiresolu-
tion levels are required.

The PPA classifier detects the noise and the boundary
points for each multiresolution level and for various sizes of
the window in increasing order. The snake runs at each mul-
tiresolution level and is then interpolated to the next level.
This part of the algorithm is similar to [51], [52]. PPA de-
tects the boundary points, noise and the regular points. The
first run of PPA removes the noise with an increasing size
of sampling windows. The second run detects the boundary.
If the point belongs to the boundary the gray level in the
central point gets increased. The gradient vector field ∇ f is
then reconstructed and GGVF applies to the improved ∇ f .
Finally, the snake runs on the resulting vectors field until
convergence. The procedure is repeated on each resolution
level.

The proposed algorithm called GGVF-MRA-PPA
snake consists of the following steps.

1. Apply MRA (Daubechies-D4) to the original image.
2. Set the resolution level to the lowest one.
3. Apply the Canny edge detector to obtain a gray level

edge map.
4. Evaluate ∇ f .
5. Noise removal step:

5.1 Apply the PPA with a certain window size to ob-
tain C(W) at every point.

5.2 If C(W) = “noise” smooth the gray level map at
this window.

5.3 Increase the size of the window and go to 5.1 until
the maximum allowed window size is reached.

6. Evaluate new ∇ f .
7. Edge detection step:

7.1 Apply PPA with a certain window size to obtain
C(W) at every point.

7.2 If C(W) = “boundary”, increase the gray level of
the edge map and exclude this point from further
runs.
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7.3 Increase the size of the window and go to 7.1 until
the maximum window size is reached.

8. Evaluate new ∇ f .
9. Run GGVF on the improved vector field.

10. Run the snake on the final vector field until conver-
gence.

11. Interpolate the snake to the next resolution level.
12. Set the image to the next resolution level.
13. Go to 3 until the highest resolution level is achieved.

The smoothing procedure employs the so-called quan-
tile filter [53], which replaces all elements in the sampling
window by the minimal (in this window) gray level. This
step is problem specific. A variety of quantile and convolu-
tion filters can be utilized.

Note that steps 3–8 can be also applied as a part of the
GGVF algorithm (inside the GGVF loop), creating a new
∇ f at each step of GGVF. However, this entails a substan-
tial increase in the computational time. Our experiments
show that using steps 3–8 as a preprocessing step (preceding
but not inside GGVF) at each level of MRA leads to good
segmentation results. The algorithm can be applied with or
without MRA, however, MRA often contributes consider-
ably to the accuracy.

The gray level is increased by fnew = α fold, where α
is a prescribed coefficient. If fnew > 255 at some points,
the entire image is re-scaled. The coefficient is problem-
depended. In our experiments we consider α = 1.5.

Finally, it is often the case that the PPA combined with
GGVF and applied to the lower resolution image produces
an acceptable solution right away, so that the resulting snake
is close enough to the true boundary. In this case the remain-
ing steps require only GGVF to correct the active contour
for the higher resolution images.

5. Numerical Experiments on Synthetic Images

The introductory numerical experiments have been con-
ducted with synthetic images similar to those appearing in
the ultrasonic imagery of the breast cancer (see Figs. 4 and
5). However, the synthetic images have simpler shapes, bet-
ter contrast and are subjected to manually created single
point noise and a brush-stroke noise.

Example 1. A simple synthetic image

Example 1 introduces a synthetic image with an addi-
tional impulse noise shown in Fig. 4. This time the GGVF-
PPA is combined with multiresolution analysis (MRA)
and compared with GGVF, GGVF-MRA and GGVF-MRA
combined with the Gaussian smoothing (GS). The Gaussian
smoothing applies to every multiresolution level. The pa-
rameters of the algorithms are problem-depended. They are
hand-tuned and the methods are compared when they per-
form the best. (see a similar evaluation of the GVF based
methods in [54]). The results are shown in Tables 2 and
3. Each cell in Table 2 and in all the forthcoming tables

Fig. 4 Example 1. Simple synthetic image, (487 × 488 pixels). (a) The
original image, (b) the initial contour and the ground truth, (c) GGVF,
(d) GGVF-MRA, (e) GGVF-MRA-GS, (f) GGVF-MRA-PPA.

Fig. 5 Example 2. Synthetic image (593 × 593) with deep concav-
ity. (a) The original image, (b) the initial contour and the ground truth,
(c) GGVF, (d) GGVF-MRA, (e) GGVF-MRA-GS, (f) GGVF-MRA-PPA.

includes the following estimates. 1) The percentage of the
true positives. 2) The average Hausdorff distance between
true contour CT and snake CS given by

distH(CT ,CS )
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Table 2 Example 1. Accuracy (percentage of true positives and the Hausdorff distance) of GGVF,
GGVF-MRA, GGVF-MRA-GS, and GGVF-MRA-PPA, (d = 4.7 pixels).

IT GGVF GGVF-MRA GGVF-MRA-GS GGVF-MRA-PPA
K K K K

0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
10 71.053 69.893 72.254 65.435 69.806 75.466 92.857 100.00

1.421 1.465 1.353 1.686 1.637 1.206 0.736 0.658
8.214 8.468 7.822 9.745 9.462 6.973 4.252 3.804

20 71.023 70.890 71.830 65.374 69.496 76.000 94.118 100.00
1.390 1.465 1.402 1.795 1.595 1.270 0.736 0.663
8.034 8.470 8.101 10.378 9.222 7.341 4.252 3.833

30 71.023 71.751 71.023 65.790 68.649 75.380 92.829 100.00
1.391 1.409 1.358 1.751 1.684 1.237 0.736 0.662
8.042 8.147 7.849 10.121 9.731 7.150 4.252 3.827

40 70.278 73.077 71.633 65.013 69.149 75.915 93.651 100.00
1.411 1.392 1.364 1.748 1.703 1.239 0.736 0.665
8.155 8.044 7.882 10.102 9.844 7.163 4.252 3.846

50 70.487 73.950 71.307 64.156 67.639 76.220 92.250 100.00
1.404 1.371 1.351 1.732 1.704 1.229 0.736 0.665
8.117 7.926 7.812 10.010 9.851 7.106 4.252 3.846

Table 3 Example 1. The best accuracy vs. the distance between the initial contour and the true
boundary. (K = 0.01, K = 0.1, 50 iterations)

d GGVF GGVF-MRA GGVF-MRA-GS GGVF-MRA-PPA
(pixels) K K K K

0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
4.7 71.053 73.950 72.257 65.790 69.806 76.220 94.118 100.00

1.421 1.371 1.353 1.751 1.637 1.229 0.736 0.658
8.214 7.926 7.822 10.121 9.8462 7.106 4.252 3.804

6.8 45.694 51.724 55.309 54.122 49.072 52.857 85.024 97.059
2.227 2.156 1.493 2.574 2.319 2.278 0.926 0.714
16.243 14.012 12.971 13.561 14.284 13.855 5.102 4.239

8.4 20.786 27.670 32.685 30.256 32.801 40.541 68.019 77.483
4.808 4.211 3.599 3.980 3.613 3.427 1.602 1.198
22.977 20.349 20.023 22.784 19.970 18.001 9.973 6.725

=

∑
a∈CT

min
b∈CS

‖a−b‖
NT
+

∑
a∈CS

min
b∈CT

‖a−b‖
NS

2
, (8)

where NT and NS is the number of points belonging to the
true contour and the snake respectively.

3) A normalized average Hausdorff distance given by

distH,n(CT ,CS ) =
distH(CT ,CS )

LT
103, (9)

where LT is the length of the true contour and 103 is the
normalizing constant.

IT in Table 2 denotes the number of iterations. A bold
font indicates the best result in the column.

The results in Table 3 show the best accuracy from 50
GVF iterations performed for K = 0.01 and K = 0.1.

Note that the Hausdorff distance divided by the length
of the true contour LT shows the relative importance of the
error. For instance, the difference in 10 pixels is significant
if the perimeter of the object is 100 pixels (a small object)
but might not be that important if the length is 10000 pixels
(a large object).

Furthermore, the advantage of Eq. (8)-Eq. (9) is that it
is a distance in a mathematical sense, whereas, the number
of true positives is not. A combination of the true positives
and the Hausdorff distance Eq. (8)-Eq. (9) is a good mea-

sure of the segmentation quality. A larger degree of overlap
of the boundaries (true positives) signifies a better segmen-
tation. On the other hand, if the number of true positives
is equal to zero, the boundaries could still be close, say at
the distance of one pixel. In that case the Hausdorff dis-
tance shows that the quality of segmentation is still relatively
good.

In turn, a set of boundaries dissimilar only over small
portions may have the same Hausdorff distance as that of
the globally dissimilar set of boundaries. However, if the
boundaries are globally dissimilar we may expect a very low
number of true positives. Finally, if the number of true pos-
itives is high and the Hausdorff distance is low, the quality
of segmentation is very likely to be good.

The distance between the initial contour and the ground
truth contour d = distH(CT ,CS ,initial), where CS ,initial is the
initial snake. Clearly, the shape of the initial contour may
effect the result as well. However, it is not the shape itself
but the position of the strong noise relative to the initial con-
tour. If the noise is still outside the contour, it may attract
the snake and slow down the iterations or even decrease the
accuracy. However, initializing the snake as a circle in the
center of gravity of the tumor is a practical assumption.

The proposed method consistently outperforms the
conventional techniques when the contour is initialized far
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Table 4 Example 2. Accuracy: GGVF, GGVF-MRA, GGVF-MRA-GS, and GGVF-MRA-PPA, (d =
5.5).

IT GGVF GGVF-MRA GGVF-MRA-GS GGVF-MRA-PPA
K K K K

0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
10 73.568 74.322 83.133 85.641 87.928 85.500 93.241 99.772

1.642 1.571 1.356 1.314 1.226 1.454 1.000 0.910
4.147 3.967 3.423 3.319 3.095 3.672 2.526 2.297

20 73.058 78.915 82.993 86.395 87.616 92.927 92.969 99.771
1.603 1.489 1.403 1.317 1.264 1.083 1.006 0.888
4.048 3.759 3.542 3.327 3.191 2.736 2.540 2.242

30 73.104 79.284 82.706 85.378 88.869 93.200 93.137 99.770
1.605 1.446 1.394 1.298 1.280 1.100 1.004 0.889
4.052 3.651 3.521 3.219 3.232 2.778 2.537 2.244

40 74.111 81.037 83.646 81.487 88.321 93.294 92.927 99.767
1.604 1.445 1.439 1.302 1.270 1.109 1.004 0.890
4.050 3.649 3.633 3.288 3.208 2.800 2.536 2.248

50 72.558 81.745 82.586 81.013 88.246 93.097 93.439 99.774
1.568 1.441 1.411 1.307 1.234 1.095 1.004 0.891
3.959 3.638 3.562 3.300 3.115 2.764 2.537 2.249

Table 5 Example 2. The best accuracy vs. the distance between the initial contour and the true
boundary. (K = 0.01, K = 0.1, 50 iterations)

d GGVF GGVF-MRA GGVF-MRA-GS GGVF-MRA-PPA
(pixels) K K K K

0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
5.5 74.111 81.745 83.646 86.395 88.869 93.294 93.439 99.774

1.604 1.489 1.439 1.317 1.280 1.083 1.004 0.891
4.050 3.759 3.633 3.327 3.232 2.736 2.537 1.249

7.4 42.521 57.760 56.636 60.694 60.238 69.614 85.631 88.972
4.262 2.883 2.941 2.739 2.799 1.876 1.406 1.291
11.059 7.280 7.122 6.917 6.989 4.736 3.428 3.259

8.8 30.922 46.939 50.826 59.100 53.333 61.868 74.497 82.843
5.909 4.624 4.423 3.703 3.880 2.444 2.009 1.776
13.446 11.675 10.825 9.351 9.864 6.171 5.453 4.484

from the boundary of the object (Tables 2 and 3). It is pos-
sible to achieve the 100 percent accuracy when the contour
is initialized close to the boundary (see our forthcoming nu-
merical examples and tables of the accuracy vs. the distance
between the snake and the actual contour). For this exper-
iment, number of multiresolution levels NL = 2, Δ1 = 0.7,
Δ2 = 0.2 and the window size S max = 4 × 4.

Example 2. A synthetic image with deep concavity

The results above are supported by Example 2. The
synthetic image with deep concavities distorted by the noise
is displayed in Fig. 5. The accuracy and sensitivity shown
in Tables 4 and 5 make it possible to conjecture that the
proposed techniques could be performing equally efficient
on real ultrasound images. For this experiment, NL = 2,
Δ1 = 0.7, Δ2 = 0.2 and S max = 4 × 4.

6. Numerical Experiments with Ultrasound Images of
Breast Tumors

Detection of tumors in the ultrasound (US) images by a
trained physician is usually efficient and the number of false
negatives is low. However, manual segmentation of the tu-
mor boundary is tedious and time-consuming. Therefore,

Fig. 6 Example 3. Low contrast US image, (782×616), (d = 11) (a) The
original image, (b) the initial contour and the ground truth, (c) GGVF,
(d) GGVF-MRA, (e) GGVF-MRA-GS, (f) GGVF-MRA-PPA.
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Table 6 Example 3. Accuracy: GGVF, GGVF-MRA, GGVF-MRA-GS, and GGVF-MRA-PPA, (d =
11).

IT GGVF GGVF-MRA GGVF-MRA-GS GGVF-MRA-PPA
K K K K

0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
10 28.723 50.000 74.136 89.568 90.188 85.886 90.476 89.374

7.781 5.483 3.799 1.673 1.636 1.738 1.545 1.467
10.347 7.292 5.052 2.225 2.841 2.311 2.252 1.951

20 27.721 53.555 73.212 90.530 89.403 86.342 90.293 88.872
7.955 5.103 3.821 1.624 1.638 1.758 1.453 1.464

10.578 6.786 5.082 2.160 2.843 2.338 3.263 1.947
30 27.762 54.096 75.107 89.921 89.580 86.903 89.676 89.732

7.961 4.961 3.818 1.645 1.642 1.737 1.443 1.494
10.586 6.598 5.077 2.187 2.848 2.310 2.249 1.986

40 28.781 54.138 75.648 89.314 90.332 86.793 89.580 85.242
7.942 4.488 3.820 1.627 1.542 1.785 1.404 1.501

10.562 5.968 5.079 2.164 2.828 2.373 3.196 1.996
50 29.293 59.085 73.625 84.849 90.688 81.409 89.580 89.686

7.873 3.755 3.816 1.654 1.142 1.779 1.403 1.403
10.469 4.994 5.075 2.200 2.848 2.366 3.195 1.999

Table 7 Example 3. Accuracy: GGVF, GGVF-MRA, GGVF-MRA-GS, and GGVF-MRA-PPA, (d =
17).

IT GGVF GGVF-MRA GGVF-MRA-GS GGVF-MRA-PPA
K K K K

0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
10 14.439 29.692 55.177 89.587 62.319 86.283 89.466 90.075

13.931 10.675 5.928 1.670 5.701 1.794 1.643 1.641
18.525 14.196 7.883 2.122 7.581 2.522 2.137 1.943

20 14.985 28.656 51.948 89.711 62.179 87.132 89.808 89.561
13.747 10.205 6.168 1.631 5.730 1.742 1.680 1.442
18.280 13.570 8.202 2.169 7.619 2.316 2.235 1.918

30 16.539 35.356 50.743 89.715 61.057 86.758 89.105 89.259
12.267 8.638 6.889 1.657 5.427 1.732 1.767 1.448
16.312 11.487 9.160 2.204 7.217 2.303 2.349 1.925

40 18.386 38.570 49.449 89.465 61.388 86.636 89.313 89.614
11.645 7.140 6.979 1.695 5.908 1.937 1.728 1.500
15.485 9.495 9.281 2.254 7.857 2.313 2.297 1.995

50 20.027 42.154 51.386 80.355 64.151 78.415 89.313 89.971
11.585 6.975 6.649 2.641 5.371 1.716 1.741 1.670
15.406 9.275 8.841 3.183 7.142 3.282 2.315 2.217

automatic segmentation techniques are important to help us
to better visualize the tumor boundary, to calculate the vol-
ume of the tumor and to extract features needed for the tu-
mor classification (benign or malignant).

Example 3. A low contrast malignant tumor

The example of a tumor shown in Fig. 6 shows con-
vergence of GGVF combined with different noise removal
methods for varying diffusion coefficients (6). The snake
has been initialized at an average Hausdorff distance of ap-
proximately 11, 17 and 22 pixels from the true boundary as
follows. First, the snake is initialized inside a binary ground
truth image which is “black” inside the tumor and “white”
outside. Next, we let the snake grow until it reaches a certain
distance from the boundary. Finally, we use this contour as
the initial snake inside the real ultrasound image. Conver-
gence of the GGVF iterations is analyzed for extreme val-
ues of the diffusion coefficients: K = 0.01 (slow diffusion)
and K = 0.1 (relatively high diffusion). The ground truth

contours were outlined by Dr. Mavin Wongsaisuvan, who is
currently a leading radiologist with the Queen Sirikit Center
for Breast Cancer of King Chulalongkorn Memorial Hospi-
tal, Bangkok Thailand. Tables 6, 7 and 8 and Figs. 6, 7 and
8 demonstrate that when the snake is initialized close to the
boundary, GGVF-MRA-GS and GGVF-MRA-PPA perform
equally well. However, when the contour is initialized far
from the boundary, GGVF-MRA-PPA outperforms GGVF-
MRA-GS, GGVF-MRA and the conventional GGVF. For
example, when the contour is initialized at 22 pixels from
the true boundary, the best result produced GGVF-MRA-
PPA for K = 0.1 is by 20 percent better than GGVF-MRA-
GS in terms of the true positive points. In turn, the Haus-
droff distance is 5 times (!) smaller (Table 8). This is be-
cause the contours are different along a significant part of
the boundary shown in Fig. 8. The best results produced by
the methods being compared versus the distance from the
true boundary are given in Table 9. For this experiment,
NL = 3, Δ1 = 0.81, Δ2 = 0.1 and S max = 15 × 15.
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Table 8 Example 3. Accuracy: GGVF, GGVF-MRA, GGVF-MRA-GS, and GGVF-MRA-PPA, (d =
22).

IT GGVF GGVF-MRA GGVF-MRA-GS GGVF-MRA-PPA
K K K K

0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
10 10.421 12.406 41.879 68.374 59.660 63.390 90.961 90.569

22.168 19.724 12.526 8.712 12.199 9.839 2.002 1.475
29.478 26.229 16.656 11.585 16.222 12.485 2.662 1.962

20 16.634 28.898 40.479 68.895 57.188 68.759 90.585 90.986
19.029 17.652 12.632 8.811 12.188 6.941 2.278 1.441
25.305 23.473 16.798 11.717 16.208 9.230 3.029 1.916

30 16.581 29.851 42.760 71.329 59.499 71.965 90.490 89.790
19.066 18.357 12.336 8.626 12.162 6.600 1.671 1.457
25.354 24.411 16.405 11.470 16.173 8.777 2.222 1.938

40 14.726 27.504 43.247 67.194 58.578 67.376 91.396 90.638
19.393 18.091 12.432 8.935 12.031 7.114 1.690 1.483
25.789 24.057 16.532 11.881 15.999 9.460 2.247 1.972

50 16.526 29.930 42.645 72.873 58.372 69.154 91.396 90.371
19.224 18.289 12.437 8.237 12.112 7.091 1.700 1.758
25.564 24.230 16.539 10.953 16.107 9.430 2.261 2.338

Table 9 Example 3. The best accuracy vs. the distance between the initial contour and the true
boundary (K = 0.01, K = 0.1, 50 iterations).

d GGVF GGVF-MRA GGVF-MRA-GS GGVF-MRA-PPA
(pixels) K K K K

0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
11.0 29.293 59.085 75.648 90.530 90.688 86.903 90.476 89.732

7.873 3.755 3.820 1.624 1.142 1.737 1.545 1.494
10.469 4.994 5.079 2.160 2.848 2.310 2.252 1.986

17.4 20.027 42.154 55.177 89.715 64.151 87.132 89.808 90.075
11.585 6.975 5.928 1.657 5.371 1.742 1.680 1.641
15.406 9.275 7.883 2.204 7.142 2.316 2.235 1.943

21.9 16.526 29.930 43.247 72.873 59.660 71.965 91.396 90.986
19.224 18.289 12.432 8.237 12.199 6.600 1.690 1.441
25.564 24.230 16.532 10.953 16.222 8.777 2.247 1.916

Fig. 7 Example 3. Low contrast US image, (d = 17) (a) The original
image, (b) the initial contour and the ground truth, (c) GGVF, (d) GGVF-
MRA, (e) GGVF-MRA-GS, (f) GGVF-MRA-PPA.

Fig. 8 Example 3. Low contrast US image, (d = 22) (a) The original
image, (b) the initial contour and the ground truth, (c) GGVF, (d) GGVF-
MRA, (e) GGVF-MRA-GS, (f) GGVF-MRA-PPA.
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Example 4. A low contrast malignant tumor. Complicated
shape. High noise

As opposed to Example 3 the structure of the noise is
much more complicated. The image from Example 3 is
characterized by an almost uniform background inside the
tumor and a single large group of noise (see the two images
scaled to 0–255 in Fig. 9). This noise can be detected in one
pass when the sampling window becomes large enough. As
opposed to that the noise in Example 4 is scattered across

Fig. 9 Scaled images from (a) Example 3, (b) Example 4.

Fig. 10 Example 4. Low contrast US image (687 × 535), (d = 9.1)
(a) The original image, (b) the initial contour and the ground truth,
(c) GGVF, (d) GGVF-MRA, (e) GGVF-MRA-GS, (f) GGVF-MRA-PPA.

Table 10 Example 4. The best accuracy vs. the distance between the initial contour and the true
boundary (K = 0.01, K = 0.1, 50 iterations).

d GGVF GGVF-MRA GGVF-MRA-GS GGVF-MRA-PPA
(pixels) K K K K

0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
6.8 59.678 65.605 79.266 85.259 82.154 83.960 85.003 85.230

3.807 3.200 2.563 1.791 2.199 1.903 1.809 1.781
15.042 10.988 5.121 3.459 4.028 3.506 3.615 2.978

9.1 26.032 56.899 67.325 83.534 82.004 83.951 86.465 86.627
9.058 3.998 3.146 1.956 2.144 2.012 1.741 1.690
14.446 9.103 6.218 3.468 3.891 3.517 2.448 2.370

12.6 12.185 22.179 26.460 75.960 36.137 77.688 68.379 80.738
18.057 11.672 8.703 2.923 7.096 2.681 3.095 2.427
30.258 27.159 25.406 4.505 21.058 4.306 11.706 3.125

the entire tumor. The noise includes several clusters some
of which are very close to the true boundary. Clearly, such
noise structures are hard to classify and eliminate.

The low contrast and very complicated, “fuzzy” bound-
ary make segmentation of the tumor in Fig. 10 untractable
for conventional GGVF (Fig. 10 (c)). However, GGVF en-
hanced by MRA and a smoother works much better. Fig-
ures 10, 11 and Tables 10 compare the performance of the
proposed method with GGVF-MRA and GGVF-MRA-GS.
The procedures display a close accuracy when the snake is
initialized at d = 9.1 from the boundary. Furthermore, for
d = 12.6 the proposed method is slightly better if K = 0.1.
However, it strongly outperforms other methods for K =
0.01 (see Table 10 and Fig. 11 (c)–(f)). This could be ex-
plained by smoothing effects of GGVF for large K. Never-
theless, large K is not always possible because large diffu-
sion often destroys the true boundary. It is much safer to run
GGVF with small K and correct the noise by PPA. The local
nature of PPA makes it possible to smooth only noisy area

Fig. 11 Example 4. Low contrast US image, (d = 12.6) (a) The original
image, (b) the initial contour and the ground truth, (c) GGVF, (d) GGVF-
MRA, (e) GGVF-MRA-GS, (f) GGVF-MRA-PPA.
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while enhancing the boundary regions. For this experiment,
NL = 3, Δ1 = 0.85, Δ2 = 0.1 and S max = 10 × 10.

Example 5. Low contrast tumor subjected to a Gaussian and
a “salt and pepper ” noise as follows:

Consider a round benign tumor depicted in Fig. 12.
Since the tumor has a relatively simple shape, the conven-
tional GGVF, GGVF-MRA, GGVF-MRA-GS and GGVF-
MRA-PPA work equally well. An accuracy above 90% is
achieved by each method for large K in Table 11. The im-

Fig. 12 Example 5. Low contrast US image, (625×415) (a) The original
image, (b) the initial contour and the ground truth, (c) GGVF, (d) GGVF-
MRA, (e) GGVF-MRA-GS, (f) GGVF-MRA-PPA.

Table 11 Example 5. The best accuracy for the original image: GGVF, GGVF-MRA, GGVF-MRA-
GS, and GGVF-MRA-PPA (50 iterations).

GGVF GGVF-MRA GGVF-MRA-GS GGVF-MRA-PPA
K K K K

0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
Best 40.694 93.905 81.356 97.287 83.280 97.701 86.923 97.600

4.764 2.475 1.856 0.917 1.493 0.905 1.137 0.978
9.448 5.027 4.359 2.369 3.306 1.145 2.496 1.211

Table 12 The best accuracy vs. the SNR. (K = 0.1, 50 iterations)

S NR(dB) GGVF GGVF-MRA GGVF-MRA-GS GGVF-MRA-PPA
42.154 89.189 88.551 93.425

Non-noised 6.975 1.641 1.716 1.589
9.275 2.183 2.282 2.113
37.630 90.504 89.630 93.053

30 8.680 1.595 1.661 1.523
11.543 2.121 2.209 2.012
41.718 90.882 87.161 93.125

25 7.465 1.531 1.647 1.490
9.927 2.036 2.191 1.993
33.195 88.842 86.883 91.499

20 9.102 1.624 1.726 1.490
12.104 2.160 2.295 1.982
25.337 84.569 83.578 86.896

15 11.791 1.771 1.834 1.702
15.679 2.355 2.438 2.263

age contains a noise induced by the US device and the ir-
regularities of the human tissues. On the top of this “natu-
ral” noise we subject the image to the Gaussian and salt and
paper noise with varying intensity. The Gaussian noise is
applied with the zero mean and 0.02 variance. The effect of
the Gaussian noise is then measured in terms of the signal-
to-noise Ratio (SNR). Table 12 shows that the performance
of the proposed method applied to suppress the Gaussian
noise is still comparable with GGVF, GGVF-MRA, GGVF-
MRA-GS. In other words PPA does not display significant

Fig. 13 Example 5. Low contrast US image. Salt and pepper noise with
the intensity nd = 1% (S NR = 25 dB). (a) The original image, (b) the ini-
tial contour and the ground truth, (c) GGVF, (d) GGVF-MRA, (e) GGVF-
MRA-GS, (f) GGVF-MRA-PPA.
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Table 13 Example 5. The best accuracy for the Salt and Pepper noise image, nd = 1% (S NR =
25 dB): GGVF, GGVF-MRA, GGVF-MRA-GS, and GGVF-MRA-PPA (50 iterations).

GGVF GGVF-MRA GGVF-MRA-GS GGVF-MRA-PPA
K K K K

0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
Best 39.465 75.410 68.687 90.164 87.391 93.976 97.917 96.761

5.401 3.839 3.615 1.804 2.231 1.475 1.054 1.196
9.982 7.149 7.302 3.490 4.478 3.206 2.241 2.303

Table 14 Example 5. The best accuracy for the Salt and Pepper noise image, nd = 3% (S NR =
20 dB): GGVF, GGVF-MRA, GGVF-MRA-GS, and GGVF-MRA-PPA (50 iterations).

GGVF GGVF-MRA GGVF-MRA-GS GGVF-MRA-PPA
K K K K

0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
Best 27.985 46.939 61.603 84.791 89.627 89.290 95.175 97.083

5.882 5.331 3.777 2.005 1.843 1.944 1.182 0.975
11.459 9.758 7.230 4.480 4.138 4.297 2.833 2.567

Fig. 14 Example 5. Low contrast US image. Salt and pepper noise,
nd = 3% (S NR = 20 dB). (a) The original image, (b) the initial contour
and the ground truth, (c) GGVF, (d) GGVF-MRA, (e) GGVF-MRA-GS,
(f) GGVF-MRA-PPA.

benefits. However, the method works much better as applied
to images subjected to the dilated salt and paper noise. The
salt and pepper noise is applied with the percentage of cor-
rupted pixels nd = 1% and nd = 3%. The corrupted pixels
are set randomly to 255 or 0. Additionally, the pixels with
the values 255 (salt) are dilated by one pixel to create false
boundaries. The black pixels (pepper) are not dilated. The
background of the tumor is usually dark, therefore, the pep-
per noise will not create false boundaries. (see Fig. 13 and
14). Table 13 shows the accuracy increase in terms of true
positives of about 10% for the low diffusion and 3% for the
high diffusion. The increase in terms of the Hausdorff dis-
tance for low diffusion is about 2 times compared to GGVF-
MRA-GS. Table 14 displays the effects of a higher inten-
sity salt and pepper noise. It shows the accuracy increase in
terms of true positives of about 6%. However, the Hausdorff
error improvement is still very impressive about 2 times for

the low and the high diffusion depending on K. For this
experiment, NL = 2, Δ1 = 0.5, Δ2 = 0.15 and S max = 3 × 3.

7. Conclusions

The proposed combination of the phase portrait analysis
and multiresolution filter bank generalizes preceding dis-
crete force field analysis routines designed for generalized
gradient vector flow method. The method applied to the US
tumor images of breast is capable of increasing the accu-
racy of the segmentation up to 10 times in terms of the nor-
malized Hausdorff distance and up to 20% in terms of true
positives.

The method shows clear benefits when applied to the
initial contour positioned far from the true boundary. Due to
its local nature, the method works very well with the noise
represented by large group of pixels with the intensity dif-
ferent from the local background such as the salt and pepper
noise.

The numerical experiments make it possible to conjec-
ture that the proposed techniques will succeed in segmenta-
tion of a variety of tumors displayed in ultrasound images of
the breast.
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