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Abstract Machining large complex industrial parts with a
high accuracy often requires tens, hundreds of thousands,
or even millions of cutter location points and hundreds of
hours of machining. That is why reducing the machining
time is one of the most important topics in the optimiza-
tion of CNC codes for 5-axis milling machines. We pro-
pose and analyze a new method of constructing curvilin-
ear tool paths which partly or even entirely align with the
direction of the maximum material removal rate. The
alignment based on the curvilinear elliptic grid generation
allows minimization of the machining time while keeping
the convenient zigzag-like topology of the path. The
method is applicable to a variety of cost functions such
as the length of the path, the machining speed, the mate-
rial removal rate, the kinematic error, etc., generating dif-
ferent machining strategies. The method has been com-
bined with a new version of the adaptive space-filling
curves. The approach has been tested against the standard
iso-parametric zigzag, MasterCamX5, “Follow Periph-
ery”/“Helical or Spiral” options of Unigraphics as well
as the conventional space-filling curves. The material re-
moval rate cost function has been tested against the tool
path length minimization. The numerical and machining
experiments demonstrate a considerable advantage of the
proposed method.

Keywords Kinematics of the milling machines . Error
minimization . Tool path planning

1 Introduction

Milling machines designed for cutting complex industrial
parts consist of several mechanical blocks to establish the
required coordinates and orientations of the tool during the
cutting process. The machine is guided by a controller which
is fed with the CNC program or G-code. The code is a se-
quence of commands carrying three spatial coordinates of the
tool tip and a pair of rotation angles needed to establish the
orientation of the tool. The G-code is a set of the Cartesian
coordinates of the cutter location points (CL points) in the
machine coordinate system and the tool orientation vectors.
The rotation angles are functions of the tool orientations. The
configuration of a 5-axis milling machine is characterized by

& Rotation matrices A and B corresponding to the two rotary
axes,

& Translations T23 and T34, where T23 is the coordinate of the
center of the A-axis in the B-axis coordinate system and
T34, the coordinate of the center of theB-axis in the spindle
coordinate system,

& Length of the tool L treated as an additional translation T4
(T4=(0, 0, L) or (0, 0, −L)) depending on the direction of
the tool tip in the spindle coordinate system.

Figures 1, 2, 3, and 4 display two configurations used in
this study.

The tool path optimization problem is usually formulated
in terms of a combination of measures of the machining effi-
ciency. Typically, such measures are the difference between
the required and the output surface (accuracy), the length of
the tool path, the negative of the machining strip (strip maxi-
mization), the machining time, etc. [1, 2].

The tool path planning methods solve this problem by gen-
erating a connected set of the positions and orientations of the
cutting tool in the workpiece coordinate system. Technically,
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the positions of the tool do not need to follow any rigid geo-
metrical pattern; however, the standard manufacturing tool
paths follow the zigzag or the spiral pattern. Recently pro-
posed patterns are the Hilbert space-filling curves [3–8] and
the adaptive space-filling curves [9–13].

The optimization could be subjected to constraints, the
most important of which is the machining accuracy. In this
paper, the accuracy is evaluated by measuring the scallop
heights and the kinematic error [14–19].

The scallop heights are kept within the allowable range by
evaluating the machining strip and selecting an appropriate
offset between the adjacent tool tracks. Larger machining
strips allow for a larger distance between the tracks, reducing
the number of tracks and consequently, the length of the tool
path. When the tool is inclined to match the surface curvature,

it is desirable that the tool follows a direction such that the
curvature to be matched is minimal. The smaller the curvature
is, the smaller the required inclination angle is and the larger
the machining strip is, thus decreasing the tool path. Unfortu-
nately, the time reduction problem is not that straightforward.
The actual machining time depends on the tool path in the
machine coordinates rather than in the workpiece coordinates.
Therefore, minimization of the machining time is a machine-
dependent problem whereas minimization of the tool path
length can be treated as the machine-independent problem.

Let us consider a part surface, discretize it, and at every
point, evaluate a direction (vector) of the maximum material
removal rate. The collection of the vectors constitutes a vector
field defined in the parametric coordinates. We will call a tool
path which visits every point, follows the desired vector field
at every point, and does not self intersect the optimal tool path.
Constructing such a tool path is a difficult task. First attempts
to optimize the tool path relative to a certain vector field are
the non-iso-parametric tool paths [20, 21] and the iso-scallop
tool path [1] proposed by C.C. Lo. The tool path is generated
by an adaptive offsetting an initial curve (usually a boundary)
so that the maximum machining strip or a maximum allow-
able scallop height is achieved along the offset curve. For
instance, the iso-scallop algorithm searches for a set of points
which lie next to the initial curve and satisfy the scallop con-
straint; the resulting points are then connected to generate the
next track of the tool.

An efficient algorithm to find a suboptimal solution of the
tool path aligned with the vector field is presented in [22]. The
entire surface is discretized using a rectangular grid in the
parametric space and then covered by potential machining
patches, each characterized by one or several optimal direc-
tions producing the maximum machining strip (Fig. 5).

The method requires an “initial path” which has the larg-
est average machining strip. The entire tool path is
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Fig. 1 5-axis milling machine
with the rotary axes on the table

Fig. 2 Haas VF-2TR, National Institute of Metrology, Thailand
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constructed by offsetting the initial path and propagating the
offsets inside the region. The offset tracks are modified if
they substantially deviate from the streamlines of the optimal
directions. In other words, at some point, the algorithm gen-
erates a new initial track.

Unfortunately, many surfaces produce a complicated, non-
uniform vector field and although the above algorithm allows
one to decompose the surface into sub-surfaces, the decompo-
sition is not very well motivated from the optimization view-
point. In particular, after the first propagation step, the algo-
rithm searches for a new “initial tool path” such that the ratio
between the length of the path and the average machining strip
is less than a certain threshold. It is not hard to show that such
analysis is not always accurate from the viewpoint of global
optimization. It may also be sensitive to local variations of the
optimization criteria. Moreover, finding the initial tool path is
a computationally expensive, non-deterministic polynomial
time (NP)-hard problem. Finally, additional efforts must be
made to ensure that the resulting tool path is structured, that
is, becomes a zigzag or spiral.

The vector field of the optimal tool directions to capture the
“skeletal” information of tool path (or a family of a tool paths)
can be combined with the geometric constraints, evaluation of
the kinematic performance of the machine, and other con-
straints such as the cutting force limits [23, 24]. However,
solutions of such problems are still purely heuristic due to
the high computational complexity.

The surface can be partitioned into clusters so that the
streamlines of the vector field are close to the conventional
zigzag or spiral [25, 26]. Within a cluster, the tool follows a
nearly optimal path. Clustering optimizes a global criterion of
the decomposition and makes it possible not only to decom-
pose the surface but also to recognize similarities to the con-
ventional tool path patterns. Although an appropriate linking
of the clusters can be performed [27], a complicated vector
field often produces too many clusters. Besides, the partition
requires tool withdrawals which increase the machining time.
More importantly, the surface smoothness at the connecting
boundaries can be jeopardized.

Finally, following the optimal or nearly optimal directions
can be combined with rear gouging, global gouging, and ma-
chine limits constraints. For instance, the accessibility map
[28], composed of the admissible ranges of the inclination
and yaw angles is combinedwith a smoothness map measured
by the derivatives of the tool vectors evaluated at the pre-
scribed cutter location points. The two maps are employed
by a path propagation algorithm similar to [22]. However,
the algorithm also requires an initial track. Besides, the
smoothness map [28] is not efficient from the kinematic error
viewpoint. For instance, the stationary points of the surface
may invoke large variations of the rotation angles [29] and
large kinematic errors; however, the smoothness map does
not take into account this effect.

We propose to construct a curvilinear tool path aligned
with the optimal vector field using the elliptic grid genera-
tion. The optimal directions are evaluated using the maxi-
mum material removal rate rather than the length of the tool
path as in [22]. The resulting vector field-aligned path
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(VFAP) is a compromise between the flexibility of methods
based on propagating of the initial track and the simplicity
of the zigzag topology. The proposed method extends the
research on grid generation for 5-axis machining original-
ly proposed in [26, 30–32] and independently in [33].

The curvilinear grid [34, 35] is aligned with the optimal
cutting directions represented by a pre-computed vector
field. The grid is generated in the parametric domain and
does not require an initialization. In contrast, the initial tool
path [28] is a computationally expensive NP-hard problem.
Although good initializations can lead to a substantial de-
crease in the tool path length [22], the sensitivity of the
method to the initial path (or even the initial point) could
be high. Some initial curves may not lead to any improve-
ment in the machining time at all. The grid generation
method, on the other hand, always leads to the same result.
Besides, the method is based on the material removal rate
rather than on the tool path length minimization. That is the
second reason for its efficiency and reliability.

In order to reduce the kinematic error, we combine the
aligned path with a new modification of the space-filling
curves [9, 13] (see Appendix A) called the biased space-
filling curve (BSFC). The BSFC follows the optimal direc-
tions and reduces the frequent turns typically generated by
conventional space-filling curves (SFC) at the expense of a
slight decrease of the machining time.

The combination of VFAP based on the material removal
rate and the BSFC is the main contribution of this paper.

2 Maximum material removal rate. Vector field
of the optimal directions

LetW1 be an arbitrary cutter contact (CC) point on the surface
(Fig. 6). Consider a set of points on the surface defined by
ΩW 1

¼ W : distS W 1;Wð Þ ¼ l1f g, where distS is the geodesic

distance and l1 is a small prescribed step (see Fig. 6a). The
corresponding set of points in the machine coordinates is de-
noted byΩM1

. The distance between the corresponding points
is given by l1,M≡l1,M(W). The machining strip corresponding

to the feed direction W 1;W
����!

is denoted by w1≡w1(W).
Figure 6b exemplifies ΩW 1

and ΩM1
for a surface depicted

in Fig. 6a obtained by the inverse kinematic transformations
of Haas VF-2TR (Figs. 1 and 2). Note that ΩW 1

is approxi-
mately a circle, whereas ΩM1

is an irregular, ellipse-shaped,
closed curve. Clearly, equal increments on the surface (in the
workpiece coordinate system) do not lead to equal increments
in the machine coordinates. Therefore, the machining time
depends critically on the translations in the machine coordi-
nates rather than in the workpiece coordinates.

Furthermore, introduce an instantaneous material removal

rate in the direction W 1;W
����!

given by RM Wð Þ ¼ F l1 Wð Þw1 Wð Þ
l1;M

,

where F is the feed rate. The machining strip w1 correspond-
ing to the prescribed feed direction is evaluated by locating the
intersections of the effective cutting shape and the design sur-
face (see [13] for details).

Note that the machining strip depends on the shape of the
tool (ball nose, flat end, toroidal end mill, etc.) and its incli-
nation. For instance, the flat-end tool must be inclined to avoid
gouging and curvature interference. Therefore, RM(W) in-
cludes the tool shape and inclination. Since, the type of the
tool and the tool vector are implicitly included, the algorithm
works for any type of the tool and any strategy to avoid goug-
ing and the curvature interference.

We will call the direction W 1;W 2
����!

optimal if W 2 ¼
argmaxW∈ΩW1

RM Wð Þ. In other words, if W2 maximizes the

material removal rate. Evaluating vectors W 1;W 2
����!

for each
surface point and transferring them into the parametric domain
(u,v) generates the vector field V(u,v)≡(vx(u,v),vy(u,v)).

Note that the rotation angles are also implicitly involved in
the maximization of RM as follows. Let us assume that the
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Fig. 5 Potential vector field
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controller performs the standard linear interpolation. The tool

speed at a CC point along W 1;W 2
����!

is equal to the prescribed
feed rate F. Note that these assumptions are not always real-
istic; however, one can replace the feed rate F by the magni-
tude of the actual velocity vector and use the evaluation given
below without any further modifications.

The time required to move from W1 to W is given by t1 ¼
l1;M Wð Þ

F . Consider the rotation angles (a1,b1) and (a,b) atW1 and
W, respectively. The required angular speed is given by va ¼
a1−a
t1
. Furthermore, if va>va,max, where va,max is the maximum

allowable rotational speed, we re-evaluate the material remov-

al rate as follows: RM≡RM Wð Þ ¼ l1 Wð Þw1 Wð Þ
tnew

, where tnew ¼
a1−a
va;max

. A similar evaluation must be performed with regard to

the second rotation angle b. The maximum allowed speed is
evaluated from the cutting conditions and the material prop-
erties. The maximum cutting speed in the air is always given
in the specifications of a 5-axis machine.

In order to reduce the machining time, we maximize the
cost function RM(W) and generate the vector field of the opti-
mal directions based on that particular but important criterion.

For each (u1, v1) from the parametric domain K, we findW1=
S(u1,v1) and W 2 ¼ argmaxW∈ΩW1

RM Wð Þ (some advanced

optimization methods can be applied to findW2; however, this
subject is beyond the scope of the paper).

Note that a variety of other cost functions related to the
machine kinematics can be used to produce the required vec-
tor fields.

– The total length of the tool path in the workpiece
coordinates. As noted, this criterion does not minimize
the machining time. Although in many cases, it reduces
the time but it is not as efficient as the proposed maximi-
zation of the material removal rate. The main advantage
of this option is that it is machine independent. It is also
independent with regard to the position and orientation of
the workpiece on the table. The criterion is useful when
the user is concerned about the tool wear (expensive tools
for micro-milling or high-speed milling). The strategy to
minimize the tool path in the workpiece coordinates is
often based on maximization of the machining strip (see
for instance [22]).

Fig. 6 Possible tool feed
directions in the workpiece and
the machine coordinates
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– The total length of the tool path in the machine
coordinates. This criterion can be also applied to mini-
mize the machining time. It is often very efficient; how-
ever, it does not include the rotation angles. Therefore, the
minimal tool path in the machine coordinates still does
not mean a minimum time. More often than not, the di-
rection of the minimal distance in the machine coordi-
nates does not follow the direction of the maximum ma-
chining strip.

– The kinematic error. This optimization can be combined
with the minimization of the machining time, for instance
with the minimization of the material removal rate. In this
paper, we apply a very basic approach based on additional
CC points to keep the kinematic error within the pre-
scribed tolerance. A more sophisticated version of such
minimization can be found in [36].

– The total angle variation. This criterion can be applied to
minimize the kinematic error which is invoked by the
sharp rotations [37]. Minimizing the angle variation is

less computationally expensive than minimizing the ki-
nematic error explicitly ([26, 37]).

3 Grid generation

Let S(u,v)≡(x(u,v), y(u,v), z (u,v)) be the required part sur-
face, where u and v are the parametric variables. We arrange
the cutter location (CC) points {(ui,j,vi,j),0≤i≤Nξ, 0≤j≤Nη} as
a curvilinear grid in the parametric domain (u,v). Mathemati-
cally, it means that the CC points are the discrete analogy of a
mapping from the computational regionΔ={0≤ξ≤Nξ, 0≤η≤
Nη} onto a parametric region defined in the parametric coor-
dinates u and v. In other words, there exists a pair of functions
{u(ξ,η),v(ξ,η)} such that the rectangular grid {i, j} being fed
to {u(ξ,η),v(ξ,η)} becomes {ui,j, vi,j} (see Fig. 7).

The required vector field V(u,v) is partitioned into two vec-
tor fields (α(u,v),β(u,v)) (the dual vector field) corresponding
to the ξ and η directions as follows:

α u; vð Þ ¼ V u; vð Þ ∈Ωξ;
0; otherwise;

;

�
β u; vð Þ ¼ V u; vð Þ∈Ωη;

0; otherwise;

�

where Ωξ and Ωη are prescribed subsets of the vector field
V(u,v) selected according to a certain criteria. For instance, if
the vector field has twomajor directions (Fig. 8), dξ and dη, the
partition is performed as follows:

α u; vð Þ ¼ ∡ V ; dξ
� �

≈0 or ∡ V ; dξ
� �

≈π;
0 ; otherwise ;

�

β u; vð Þ ¼ ∡ V ; dη
� �

≈0 or ∡ V ; dη
� �

≈π
0 ; otherwise :

�

In other words, the vectors V(u,v) are included into the dual
vector field (α(u,v), β(u,v)) if they are almost parallel or al-
most antiparallel to dξ or dη. Mathematically, it means that

V ;dð Þ
Vk k dk k

���;−1��� ��� ≤εV , where εV is the prescribed threshold.

Fig. 7 Coordinate transformations and the curvilinear grids. Δ denotes
the computational domain, K the parametric domain

Fig. 8 Partition of the vector field V(u,v) into (α(u,v),β(u,v))
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For vector fields with regular geometry, it is often sufficient
to align only one family of grid curves. In this case, α(u,v) is a
subset of V(u,v), whereas β(u, v)=0. The vector field (α(u,v),
β(u,v)) can be further simplified. For instance, a point (u,v) can
be considered “important” if the optimal direction substantially
reduces the machining time, otherwise α(u,v)=β(u,v)=0.

Furthermore, the curvilinear grid {u(ξ,η),v(ξ,η)} is aligned
with the dual vector field (α(u,v),β(u,v)) using a modification
of classical grid generation methods [38–40].

The smoothness of the grid is represented by a functional
given by

FS ¼
ZZ

u2ξ þ u2η þ v2ξ þ v2ηdξdη; ð1Þ

where subscripts denote the partial derivatives.
Note that Fs is a classical variational functional providing

smoothness of the mapping {u(ξ,η),v(ξ,η)} [39, 41]. Original-
ly, the functional was applied to the tool path generation in
[31]. The corresponding Euler equations for (1) are Laplacians
able to offset the boundary due to their smoothing property.
For example, if the boundary of the parametric region is a
rectangle, functional (1) generates a rectangular grid corre-
sponding to the conventional zigzag tool path. Furthermore,
we show that a combination of the smoothness functional FS

and the vector field alignment generates the required curvilin-
ear tool path.

For simplicity, consider alignment of the grid lines η=const
with a vector field α(ξ,η)≡(α1(ξ,η),α2(ξ,η)). The alignment is
provided by a functional given by

FA ¼
ZZ

sξα
0

� 	2
dξdη;

where α′(ξ,η)≡(α1
′ ,α2

′ )=(−α2,α1) is the vector field perpendic-
ular to α(ξ,η) and sξ=(uξ,vξ) is the tangent to the grid line η=
const. If sξ is parallel or antiparallel to α, then FA=0. Following

[39], the functionals FS and FA are combined linearly as
follows: Φ=FS+λFA, where λ is the weighting coefficient.

The corresponding Euler equations are

Φu−Φξ;uξ−Φη;uη ¼ 0;
Φv−Φξ;vξ−Φη;vη ¼ 0:

Substitution sξα′=uξα1
′ +vξα2

′ and differentiation yields

uξξ þ uηη þ 2λ α
0
1 α

0
1uξ þ α

0
2vξ

� 	h i
ξ
¼ 0;

vξξ þ vηη þ 2λ α
0
2 α

0
1uξ þ α

0
2vξ

� 	h i
ξ
¼ 0:

ð2Þ

Let us introduce a vector field β(ξ,η)=(β1(ξ,η),β2(ξ,η)) to be
alignedwith sη=(uη,vη). Equation (2) is thenmodified as follows

uξξ þ uηη þ 2λ α
0
1 α

0
1uξ þ α

0
2vξ

� 	h i
ξ
þ β

0
1 β

0
1uη þ β

0
2vη

� 	h i
η

�
¼ 0;

vξξ þ vηη þ 2λ α
0
2 α

0
1uξ þ α

0
2vξ

� 	h i
ξ
þ β

0
2 β

0
1uη þ β

0
2vη

� 	h i
η

�
¼ 0;

ð3Þ
where β ξ; ηð Þ≡ β

0
1;β

0
2

� 	
¼ −β2;β1ð Þ:

Finally, we endow the proposed system of the elliptic
partial differential equations with appropriate boundary con-
ditions designed in such a way that the grid nodes slide
along the boundary to adapt to the geometry of the grid lines
inside the parametric region. Their positions are obtained
iteratively by projecting the near-boundary nodes onto the
boundary along the direction of the grid lines (see details in
[38]).

The numerical solution of the system (3) is based on
the discrete Laplacian, the central differences for the first
derivatives and numerical iterations. The corresponding
finite-difference equations are solved by the Newton
method.

Fig. 9 Multiple solutions of the
kinematics equations
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4 Kinematic errors and optimality measures

Let WD(sp,sp+1,t)∈S(u,v) be a space curve between two tool
positions Wp and Wp+1 extracted from the machined surface
S(u,v), where t∈[sp,sp+1] is a parametric coordinate along the
curve. The kinematic error is the total distance between the
desired trajectoriesWp,p+1

D (t)≡WD(sp,sp+1,t) and the actual tra-
jectories Wp,p+1(t)=W(sp,sp+1,t) defined by

ε ¼
X
p

dist WD
p;pþ1 tð Þ;Wp;pþ1 tð Þ

� 	
: ð4Þ

The actual trajectories are obtained by using the cor-
responding inverse kinematics transformations as fol-
lows. Consider a kinematics transformation W ¼ K
ℜ ;Mð Þ from the machine to the workpiece coordinates,
where W=(x, y, z), M=(X, Y, Z) denote the workpiece
and the machine coordinates and ℜ≡ (a,b) the rotation
angles. The procedure to derive the trajectories Wp,p+1

follows [37] (pages 40–42).

First, every Wp invoke the inverse transformation

Mp≡K−1 ℜp;Wp

� �
. Second, the rotat ion angles ℜ ≡

ℜ(t)=(a(t),b(t)) and the machine coordinates M≡M(t)≡(x(t),
y(t),z(t)) are assumed to change linearly between the pre-
scribed points sp, sp+1 as follows:

Mp;pþ1 tð Þ ¼ Lpþ1 tð ÞMpþ1 þ Lp tð ÞMp;

ℜ tð Þ ¼ Lpþ1 tð Þℜpþ1 þ Lp tð Þℜp;

where Lpþ1 tð Þ ¼ t−sp
spþ1−sp; Lp tð Þ ¼ spþ1−t

spþ1−sp; sp≤ t≤spþ1:

TransformingM back toW for every t yields a trajectory of
the tool tip in the workpiece coordinates given by

Wp;pþ1 tð Þ ¼ K ℜ tð Þ;Mp;pþ1 tð Þ� �
¼ K Lpþ1 tð Þℜpþ1 þ Lp tð Þℜp



; Lpþ1 tð ÞMpþ1 þ Lp tð ÞMp

� �
:

In order to represent the tool path in terms of the workpiece
coordinates, we eliminate Mp and Mp+1 by using the inverse

transformation Mp ¼ K−1 ℜp;Wp

� �
.

Substituting, Mp and Mp+1 yields Wp;pþ1 tð Þ ¼ K Lð pþ1 tð Þ
ℜpþ1 þ Lp tð Þℜp; Lpþ1 tð ÞK−1 ℜpþ1;Wpþ1

� �þ Lp tð Þ
K−1 ℜp;Wp

� �Þ.
Introduce a workpiece coordinate system O1, a coordinate

system of the first rotary part O2, a coordinate system of the
second rotary part O3 and a coordinate system of the spindle
O4 (see Fig. 3).

As an example, consider a machine characterized by two
rotary axes on the table (the so-called 0–2 machine, Fig. 3).

It is not hard to demonstrate that M≡K−1≡K−1 ℜf g W½ � ¼ B
b½ � A a½ � W þ T 12ð Þð þT 23Þ þT34−T4; where T4=(0,0,−L)
and A and B are the corresponding rotation matrices. The
coordinate transformation for other configurations such as
1–1 or 2–0 can be derived using a unified approach present-
ed in [37].

Fig. 11 Correcting the biased
space-filling curve

Fig. 10 BSFC: case 1 and case 2; 1, 2, 3, and 4 denote RM1
; RM2

;
RM3

; and RM4
, respectively
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If a is rotated so that the tool projection onto (x, y) is
aligned with the positive y (Fig. 9) then

a ¼

arctan
Ix
Iy

� �
if Iy > 0;

arctan
Ix
Iy

� �
−π if I y < 0; Ix≤0;

arctan
Ix
Iy

� �
þ π if Iy < 0; Ix > 0;

8>>>>>><
>>>>>>:

b ¼ arccosI z;

where (Ix, Iy, Iz) is the tool orientation vector.
It is well-known that the solution (a,b) of the above system

is not unique. In order to reduce the kinematics error, we apply
the shortest path optimization [29] with regard to the multiple
solutions.

Furthermore, consider Eq. (4). Clearly, the error minimiza-
tion procedure depends on the definition of the distance
employed by (4). Some computationally simple choices are
dist2(W

D,W)= ‖|WD(t)−W(t)|E‖2 dist∞(W
D,W)= ‖|WD(t)−

W(t)|E‖∞, where | |E is the Euclidian distance and WD(t),W(t)
are parameterized with regard to the pseudo time t. The above
distances are differentiable and therefore are easy to be incor-
porated into standard minimization algorithms. They often
produce good results when the compared curves are similar,
arc-like segments.

Another good option is the rms distance based on a natural
parameterization given by

distN WD;W
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ1
0

WD lD tð Þð Þ−W l tð Þð Þ�� ��2dt
vuuut ;

where lD(t) and l(t) denote the corresponding arc-length
parameterizations.

A serious drawback of dist2, dist∞, and distN is that they
depend on the particular parameterization. Therefore, in this
paper, we employ a parameterization-invariant Hausdorff dis-
tance given by

distH WD;W
� � ¼ max max

a∈WD tð Þ
min
b∈W tð Þ

a−bj jE; max
b∈W tð Þ

min
a∈WD tð Þ

a−bj jE
�
:

�

Note that the tool trajectory is compared with the desired
trajectory extracted in some way from the machined part. In
engineering practice, the parts are defined by standard formats
such STL, Standard for the Exchange of Product model data
(STEP), Initial Graphic Exchange Specification (IGES), etc.
For instance, the IGES represents curvilinear NURBS faces
glued together along the boundary edges. Therefore, the meth-
od of extracting the trajectory should include the case of the
multi-patch surfaces when the curve crosses the boundary or
even several boundaries.

5 Biased space-filling curve

Although the generated curvilinear grid has been aligned with
the prescribed vector field, the distance between the CC points
has not been optimized with regard to the machining strip.
Therefore, the grid is converted into a pair of continuous func-
tions u(ξ,η),v(ξ,η) using the bilinear interpolation. Next, we
construct two iso-parametric paths in the ξ and η direction by
calculating the largest tool path interval and using it as an
offset as follows. The first tool track T0 lies at the boundary

Fig. 13 Acceptable surface
roughness

Roughness spacing 

Waviness 

Roughness  
Waviness spacing 

Profile 

Fig. 12 Surface characteristics
and terminology
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Fig. 14 VFAP solution for surface 1
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of the parametric domain. Next, T1 is a curve η=η1 defined by
{u(ξ,η1), v(ξ,η1)} such that distH(T0,T1)<wR,0+wL,1, where
wL,0,wR,1 is the left and the right maximum allowed strip
width. The next track is generated by {u(ξ,η2), v(ξ,η2)} such
that distH(T1,T2)<wR,1+wL,2. The two overlaying tool paths
represented by the coordinate lines are characterized by the
maximum possible machining strip between any pair of the
adjacent tool tracks.

Next, the problem is simplified by thresholding the vector
field as follows

I ξ; ηð Þ ¼ V ξ; ηð Þ; if KI > k
0
;

0; 0ð Þ ; otherwise ;

�
ð5Þ

where k′ is the prescribed threshold and KI is the measure of
importance of the particular point. We consider two measures,
max|K|, where K is the curvature of the surface and maxRM−
minRM. The first measure is the basic characteristic of the
surface implying that if the curvature of the surface is high,
the feed direction is important. The second measure tells you
that if the difference between the maximum and the minimum
material removal rate at the particular point is large, the feed
direction is important. Equation (4) defines “important points”
where I(u,v)≠0 and “unimportant points” where I(u,v)=0.

Furthermore, the rectangular grid in (ξ,η) is regarded as an
undirected graph G, where each two adjacent cells are con-
nected by an edge. The cells are then connected by the biased
adaptive space-filling curve (BSFC) using the following
procedure.

Consider an important cell A.

Case 1. The grid is well aligned with the vector field. In this
case, A can be connected with one of the neighbor-

ing cells B such that AB
�!

is almost parallel or almost
antiparallel to the direction of the corresponding
vector field V(ξ,η) (see Fig. 10).

Case 2. The grid is not well aligned with the vector field. In

this case, none of the directions AB
�!

is close to V(ξ,η).
Therefore, we evaluate thematerial removal rateRM1

,
RM2

,RM3
, andRM4

in the four possible directions and
connect in the direction of the maxi RMi (as shown in
Fig. 10).

Finally, if cell A is unimportant, we connect it with one of
the four neighboring cells randomly. Within this framework, it
is often practical to use the “tracing bug” techniques designed
to avoid frequent turns. In this case, the unimportant cell is

Fig. 14 (continued)
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connected to the next cell following the direction of the tracing
bug from the preceding step.

Finally, the BSFC is a modification of the adaptive SFC
proposed in [42]. The advantage of BSFC is the reduction
of the machining time by following a set of the prescribed
directions at the important points. Furthermore, large kine-
matic errors appear when the tool feed vector abruptly
changes direction. Therefore, the BSFC decreases the kine-
matic error by reducing frequent sharp turns using the fol-
lowing correction. For each point, we calculate the number
of the preceding consecutive turns. The segments with a
large number of turns will be marked and the vector field
V(ξ,η) at each point of this segment will be adjusted as
follows: V(ξ,η)=dW(ξ,η), where dW(ξ,η) denotes the “prin-
cipal direction” in a window around a segment as shown in
Fig. 11. The procedure can be considered as a high fre-
quency filter.

6 Quality of the machined surface

We measure the quality of the machined surface in terms of
its roughness and waviness. Roughness represents micro
peaks and valleys of the surface produced by the tool while
waviness is often attributed to the vibrations. Waviness often
increases when the milling machine operations involve large
and sharp periodic rotations. Considering the surface as a 2D
signal, the roughness is associated with high frequencies of
the signal and the waviness with medium frequencies
(Fig. 12).

We measure the roughness by one of the most commonly
used methods called the stylus contact profiling [43]. The
surface profile obtained by a high-resolution probe is post
processed by the Gaussian filter [44]. The surface roughness

is given by Ra ¼ 1
N ∑

N

i¼1
yij j, where yi is the height of the profile

Table 1 VFAP vs. conventional tool paths. Surface 1

Tool radius 4 mm Tool path generation method Scallop height (mm)

0.25 0.1 0.05

Performance Tool path length (mm) Master CAM 34,698.0 75,392.0 144,098.0

UG HS 30,713.0 74,354.0 148,130.0

FP 6707.8 10,833.0 15,280.0

ISO Zigzag 6371.9 10,187 14,535

GA SFCL 4417.9 6605.3 9367.5

VFAPL 4473.3 6176.1 8610.3

VFAPR 4724.1 7117.0 9947.0

Machining time MAHO 600 E UG HS 3:24:33.8 8:18:32.6 16:37:30.3

FP 0:39:34.1 1:05:15.8 1:33:52.2

ISO Zigzag 0:28:01.0 0:44:58.0 1:04:21.0

GA SFCL 0:27:15.3 0:42:36.5 0:59:32.2

VFAPL 0:27:13.2 0:42:10.7 0:58:18.5

VFAPR 0:18:14.2 0:28:03.4 0:40:04.2

Haas VF-2TR UG HS 6:15:24.6 15:07:51.0 30:07:46.4

FP 0:39:35.6 2:13:45.3 3:10:43.1

ISO Zigzag 0:45:08.0 1:12:41.0 1:43:41.0

GA SFCL 0:44:34.2 1:09:20.5 1:37:29.2

VFAPL 0:43:57.9 1:08:40.3 1:35:52.4

VFAPR 0:33:52.7 0:52:47.5 1:14:28.2

Advantage rel. to ISO Tool path length (mm) GA SFCL 30.7 % 35.2 % 35.6 %

VFAPL 29.8 % 39.4 % 40.8 %

VFAPR 25.9 % 30.1 % 31.6 %

Machining Time MAHO 600 E GA SFCL 2.7 % 5.2 % 7.5 %

VFAPL 2.8 % 6.2 % 9.4 %

VFAPR 34.9 % 37.6 % 37.7 %

Haas VF-2TR GA SFCL 1.2 % 4.6 % 6.0 %

VFAPL 2.6 % 5.5 % 7.5 %

VFAPR 24.9 % 27.4 % 28.2 %
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relative to a mean Gaussian curve and N is the total number of
the measurement points. Furthermore, the Gaussian filter al-
lows us to evaluate waviness by subtracting the roughness
profile from the raw profile.

We measured 20 sample profiles with the standard
cutoff of 0.8 mm [44]. The average value was compared
with the roughness and waviness produced by the con-
ventional method. The roughness of the machined sur-
faces was within the acceptable range for surface mill-
ing operations, that is, between 0.2 and 25 μm [45] (see
Fig. 13).

7 Numerical examples and cutting experiments

In this section, the proposed VFAP-BSFC method is com-
pared with the iso-parametric zigzags tool path (ISO) for three
convex-concave parts. We also test the method against
MasterCAM X5, “Follow Periphery” (UG-FP), “Helical or
Spiral” (UG-HS) options of Unigraphics NX9 and the adap-
tive curvilinear SFC [42]. The test surfaces were initialized in
the MasterCAM environment using a parametric representa-
tion. Next, the surfaces were exported into the STEP or IGES
formats and imported into the UG.

Fig. 15 Test surface 1. Virtual
and real machining
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The conventional methods and VFAP have been applied
with an appropriate setup optimization [14]. The accuracy of
the machining has been evaluated in terms of the kinematic
error, roughness, and waviness. All surfaces have been ma-
chined by the flat-end tool.

We also test the proposed cost function against minimiza-
tion based merely on the length of the tool path. In this case,
the vector field is generated along the direction of the maxi-
mum machining strip and the BSFC is based on the length of
the tool path. The corresponding cost function is evaluated by
replacing the material removal rates with the length of the tool
path between the corresponding nodes. We will indicate the
material removal rate and the tool path length versions of the

optimization by subscripts R and L respectively, for instance
VFAPR and VFAPL.

7.1 Example 1. A concave–convex surface with multiple
peaks. Rough cut

The example demonstrates the efficiency the VFAP with the
reference to the traditional iso-parametric path (ISO), an auto-
matic tool path generation procedure of MasterCAM X5 as
well as the algorithms UG-FP and UG-HS. We also test
VFAPL against VFAPR and against the adaptive SFC based
on the kinematic error proposed in [42].

Consider a surface in Fig. 14a given by

x u; vð Þ ¼ 100u−50; y u; vð Þ ¼ 100v−50;
z u; vð Þ ¼ 11:6e−30 v−1:7uþ0:3ð Þ2 þ 11:6e−30 v−1:7uþ1:3ð Þ2 þ 11:6e−30 1:7u−vþ0:6ð Þ2−33:3v v−1ð Þ þ 70:

The corresponding vector fields VL and VR are shown in
Figs. 14b, c, respectively, where the dashed lines indicate the
important points. The curvilinear grids GL and GR adapted to
the prescribed vector fields are shown in Figs. 14d, e. SFCL

and SFCR are displayed in Fig. 14f, g, whereas the proposed

BSFCL and BSFCR are shown in Figs. 14h, i. Additionally, we
generated a curvilinear grid GA and the corresponding adap-
tive SFCA [42] shown in Figs. 14j, k. The grid and the SFCA

tool path have been constructed using the minimization of the
kinematic error [42]. The surface was machined virtually by

Table 3 Roughness and Waviness of VFAP vs. the conventional tool paths. Surface 1

Roughness Rα (μm) Standard deviation Waviness (μm) Standard deviation

ISO zigzag VFAPL VFAPR ISO zigzag VFAPL VFAPR ISO zigzag VFAPL VFAPR ISO zigzag VFAPL VFAPR

6.7 6.2 6.1 9.1 8.5 3.7 26.9 26.9 13.7 8.1 7.9 4.7

Table 2 Kinematic error VFAP vs. conventional tool paths. Surface 1

Tool path generation method Hausdorff distance between the actual and required trajectory

h=0.25 h=0.10 h=0.05

#CC Ave Std #CC Ave Std #CC Ave Std

MAHO 600 E UG HS 5557 0.055 0.059 32,351 0.033 0.026 120,327 0.020 0.013

FP 1139 0.047 0.057 7329 0.029 0.025 14,542 0.018 0.013

ISO Zigzag 4574 0.075 0.057 9339 0.043 0.023 17,940 0.024 0.011

GA SFCL 3390 0.106 0.059 7577 0.045 0.024 14,932 0.023 0.012

VFAPL 3552 0.097 0.059 7413 0.043 0.023 14,601 0.022 0.012

VFAPR 2622 0.085 0.058 5689 0.042 0.023 11,526 0.021 0.012

Haas VF-2TR UG HS 8649 0.066 0.063 48,163 0.037 0.026 169,196 0.022 0.012

FP 1675 0.057 0.060 8154 0.034 0.026 18,810 0.034 0.027

ISO Zigzag 4677 0.087 0.058 10,205 0.044 0.022 19,455 0.025 0.011

GA SFCL 3510 0.108 0.060 8178 0.045 0.023 16,603 0.023 0.011

VFAPL 3652 0.104 0.061 8159 0.045 0.023 16,373 0.023 0.011

VFAPR 2805 0.095 0.060 6323 0.043 0.022 12,910 0.022 0.011
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Fig. 16 VFAP solution for surface 2
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Vericut 7.0 and on the 5-axis machine Haas VF-2TR by a flat-
end tool with the radius 4 mm.

The results obtained by the VFAP technology compared
with the conventional ISO tool path, MasterCAM X5, UG-
FP, UG-HS, and the adaptive SFCA are given in Table 1.
The improvement is defined as before−after

before 100. The machining
depends on the configuration of the machine, position of the
workpiece, and the prescribed scallop height; however,
VFAP always provides an improvement. Furthermore,
VFAPR designed to reduce the machining time provides 37
and 28 % improvement of the machining time for the
MAHO 600 E and Haas VF-2TR, respectively, whereas
VFAPL generates 40 % improvement in terms of the tool
path length. This is considerable progress considering hun-
dreds or even thousands of hours typically spent for machin-
ing complicated industrial parts.

Figure 15 show the surface obtained by the ISO tool path
vs. surfaces machined using the proposed method. Table 1
displays the advantages of the method. For instance, the max-
imum allowed scallop of 0.05 mm requires 1 h and 4 min and
1 h and 43 min for a non-optimal tool path on MAHO 600 E
and Haas VF-2TR, whereas with the optimization, the ma-
chining requires 40 min and 1 h and 14 min, respectively.

Clearly, it is an impressive advantage for such a small work-
piece of 100×100 mm.

Observe an overwhelming advantage over the tool path
generated by MasterCAM X5. For h=0.25, 0.1, and
0.05 mm, the tool path length has been reduced by factors of
4, 10, and 14, respectively. Furthermore, the UG tool path is
considerably better than that generated by MasterCAM and
the proposed method outperforms UG as well. For instance,
compared to UG-FP, the tool path has been reduced by 34, 43,
and 43.5 % for h=0.25, 0.1, and 0.05, respectively.

There is a clear advantage in the machining time as well.
For example, on MAHO 600 E for h=0.25 the VFAPR re-
quires 40 min vs. 1 h and 33 min using UG-FP and 16 h and
37 min(!) using UG-HS(see a detailed comparison in Table 1).

Finally, cutting large complex industrial parts with high
accuracy employs tens or hundreds of thousands, and even
millions of CC points and hundreds of hours. Therefore, the
improvement in the tool path length and in the machining time
is significantly saving long hours of machining and reducing
wear on the tool.

Table 2 displays the kinematic error. The constraint im-
posed on the scallop height h is used as an upper limit for
the allowable kinematic error. If the kinematic error between

Fig. 17 Example 2. Machined
surfaces
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two CC points exceeds h, an additional CC point is inserted
until max(ε)≤h. Next, we evaluate the average error given by

ε
0 ¼

∑
m−1

k¼0
εk

m , wherem is the number of trajectories. If ε′<<h, the
surface is close to the required surface not only in the sense of
the maximum Hausdorff distance, but in the sense of the av-
erage Hausdorff distance as well. This indicates a good quality
of the surface.

Clearly, the average error is a small fraction of the
required accuracy h. As a matter of fact, the difference
between the results is in the range of 0.02 for h=0.25,
0.01 for h=0.1, and 0.001 for h=0.05. For the majority
of the modern milling machines, this difference still lies
outside the range of machining accuracy. Therefore, the
proposed method provides a tangible increase in terms of
the length of the tool path and the machining time while
maintaining the same accuracy. Table 2 demonstrates that
the method substantially reduces the number of required
CC points for high-accuracy milling (h=0.1 and h=0.01).
Note that the decrease in the number of the CC points is,
in particular, important for high-speed milling when the
programmed feed rate can exceed the sampling speed of
the controller.

Table 3 displays the average roughness and waviness of the
machined surface. Roughness of VFAPL,VFAPR, and ISO
zigzag is 6.1, 6.2, and 6.7 μm, respectively, whereas the wav-
iness of VFAPL is about 14 μm and VFAPR and ISO zigzag is
about 27 μm for both cases. Therefore, the surface generated
by the proposed method is characterized by a slightly better
roughness and waviness relative to the conventional ISO path
while outperforming the conventional zigzag in terms of the
cutting time and the length of the tool path. Finally, the mea-
sured roughness complies with the standard industrial require-
ments for the quality of the surface milling (see Fig. 13).

7.2 Example 2. A peak-crossing surface

Analyzing surface 1 above characterized by the parallel diag-
onal peaks, one may arrive at the following question. “Can we
rotate the standard zigzag path so that the cut is performed
along the optimal direction?” Unfortunately, it is not always
possible. Consider a surface in Fig. 16a given by

x u; vð Þ ¼ 50u−25; y u; vð Þ ¼ 50v−25; z u; vð Þ

¼ 4:5 e−30 v−2uþ0:5ð Þ2 þ e−30 uþ2v−1:5ð Þ2
� 	

:

Table 4 VFAP vs. conventional tool paths. Surface 2

Tool radius 2 mm Tool path generation method Scallop height(mm)

0.25 0.1 0.05

Performance Tool path length (mm) Master CAM 6325.5 13,760.0 23,294.4

UG HS 6555.2 15,595.5 33,865.5

FP 3283.6 5138.9 7260.3

ISO zigzag 2591.4 4021.7 5644.3

VFAPL 2036.1 3125.0 4323.5

VFAPR 2483.9 3807.4 5323.8

Machining Time MAHO 600 E UG HS 0:34:55.3 1:22:50.4 3:02:12.2

FP 0:20:08.2 0:32:17.8 0:46:07.8

ISO zigzag 0:08:05.2 0:12:40.4 0:17:51.8

VFAPL 0:07:53.8 0:12:18.6 0:17:10.2

VFAPR 0:06:29.9 0:09:55.3 0:13:47.7

Haas VF-2TR UG HS 2:59:36.0 7:10:23.0 14:54:48.8

FP 1:27:46.9 2:18:47.6 3:16:01.8

ISO zigzag 0:33:48.7 0:53:10.3 1:15:03.7

VFAPL 0:34:21.1 0:52:03.5 1:13:12.6

VFAPR 0:26:42.5 0:41:55.5 0:56:26.1

Advantage rel. to ISO Tool path length (mm) VFAPL 21.4 % 22.3 % 23.4 %

VFAPR 4.1 % 5.3 % 5.7 %

Machining Time MAHO 600 E VFAPL 2.3 % 2.9 % 3.9 %

VFAPR 19.6 % 21.7 % 22.8 %

Haas VF-2TR VFAPL −1.6 % 2.1 % 2.5 %

VFAPR 21.0 % 21.2 % 24.8 %
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The corresponding vector fields VL and VR are shown in
Figs. 16b, c. The diagonal clusters of important points are
indicated by the dashed lines.

Clearly, the abovementioned re-orientation cannot provide
the required alignment. Besides, the surface is defined on a
curvilinear rectangle which creates additional problems for a
conventional tool path generation. Therefore, the curvilinear
grids GL and GR in Fig. 16d, e are generated using the dual
vector field technology (see Fig. 8). The corresponding
BSFCL and BSFCR are shown in Fig. 16f, g. The virtual cuts
performed with the 2-mm flat-end tool radius and the 0.25-
mm maximum scallop heights are shown in Fig. 17a–c for
ISO, VFAPL, and VFAPR, respectively.

Table 4 demonstrates advantages of the proposed method
over ISO, MasterCAM X5, UG-FP, and UG-HS. The pro-
posed method outperforms the above algorithms for every
prescribed scallop height. For instance, for h=0.25 mm
VFAPL tool path is 5.3 times shorter than that generated by
MasterCAM, 23 % shorter than ISO, 7.8 times shorter than
UG-HS, and 40 % shorter than UG-FP.

There is a clear advantage in the machining time as well.
For instance, MAHO 600 E for h=0.05 the VFAPR requires

13 vs. 46 min using UG-FP and 3 h and 2 min using UG-
HS(see the full evaluation in Table 4).

Table 5 shows the accuracy of the proposed method in
terms of the kinematic error. The error behaves similarly to
Example 1 with negligible deviations from the prescribed ac-
curacy. Still, the orientation may help. As a matter of fact, a
complicated surface may require a combination of orientation
and the proposed BSFC. However, as long as there is at least
one non-linear or even diagonal cluster of important points,
there always will be benefits provided by the VFAP
technology.

Finally, as opposed to Example 1 where only one family of
the grid curves was adapted to the required vector field (see
Eq. (2)), Example 2 shows the efficiency of the method ap-
plied with the dual vector fields.

7.3 Example 3. A semi-oval ridge (composite grid). Rough
and fine cut

A surface in Fig. 18a is characterized by a ridge nearby the
boundary. We adopted this shape from the dental micro-
milling where the elevated part represents the ridges of a

(a) Test Surface 3 (b)The curvature   

Fig. 18 Test surface 3 and its
curvature

Table 5 Kinematic error. VFAP vs. conventional tool paths. Surface 2

Tool path generation method Hausdorff distance

h=0.25 h=0.10 h=0.05

#CC Ave Std #CC Ave Std #CC Ave Std

MAHO 600 E UG HS 2130 0.043 0.056 9940 0.026 0.025 37,174 0.018 0.012

FP 1732 0.055 0.061 5973 0.032 0.027 12,115 0.019 0.013

ISO zigzag 4584 0.030 0.046 7834 0.021 0.022 12,306 0.015 0.012

VFAPL 2330 0.057 0.061 5678 0.030 0.026 11,922 0.016 0.013

VFAPR 2436 0.035 0.041 5998 0.013 0.014 11,957 0.007 0.007

Haas VF-2TR UG HS 7268 0.085 0.064 34,395 0.041 0.025 113,968 0.024 0.011

FP 4192 0.085 0.068 12,240 0.041 0.026 27,106 0.022 0.012

ISO zigzag 5164 0.059 0.065 9966 0.032 0.025 17,349 0.020 0.012

VFAPL 3378 0.095 0.069 8610 0.041 0.025 18,536 0.021 0.012

VFAPR 2789 0.064 0.061 6709 0.023 0.023 13,444 0.012 0.012
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dental crown or implant [46]. The VFAP for such surfaces can
be combined with a decomposition of the parametric region
and generation of a curvilinear grid in each subregion.
Figure 18b shows that the most important region is a semi-
circular ridge nearby the boundary characterized by the high
curvature

We model a situation when the user needs a minimal tool
path for the rough cut to reduce the tool wear and the minimal
time for the fine cut. The proposed tool path generation meth-
od allows for these strategies. The rough machining is per-
formed along the direction of the highest curvature in order
to maximize the machining strip, that is, VFAPL. This

Fig. 19 VFAP solution for surface 3
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Fig. 20 VFAP vs. the ISO zigzag
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machining path has been employed in order to minimize the
tool wear during the rough machining. The finishing strategy
employs VFAPR which maximizes the material removal rate
and reduces the machining time. We observed that most of the
time, the tool is moving along the direction of the minimal
curvature.

The parametric region is decomposed into several subre-
gions taking into account the direction of the vector field.
Such decomposition can be performed manually or using vec-
tor field clustering [26]. In our particular case, the important
points belong to a semi-circular region shown in Fig. 18b. The
tool path in the remaining region does not generate large er-
rors. Therefore, we partition the parametric region into two
subregions and construct the required curvilinear grid in each
subregion independently (see Fig. 19a). The BSFCs for the
rough and fine cuts constructed from the curvilinear grid are
shown in Fig. 19b–e, respectively. Note that in this particular
case, we use a single-grid GLR so that one family of the grid
lines is used for VFAPL and another for VFAPR.

The virtual and the real machining are presented in Fig. 20.
The optimized tool path tested against the benchmark algo-
rithms is presented in Table 6. The length of VFAPL path
based on the adaptive grid technology is shorter by 7–20 %.
For instance, when the maximum allowable scallop height h=
0.05, the length of the tool path is about 2500 mm shorter. The
machining time for the fine cut using VFAPR has been reduced
by 76 %. In other words, the proposed method reduces the
machining time by (approximately) factor 2.

There is a clear advantage relative to UG. For instance,
MAHO 600 E for h=0.25 the VFAPR requires 39 min vs.
1 h and 42 min using UG-FP and 18 h and 57 min using
UG-HS(see the full evaluation in Table 6).

Table 7 compares the quality of the proposed method vs.
the ISO path in terms of kinematic error and the number of
the required CC points. Clearly, the error stays within the
prescribed limits whereas the number of the CC points has
been drastically reduced for high accuracy milling (h=0.1
and h=0.01).

Fig. 20 (continued)
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Table 7 Kinematic error. VFAP vs. conventional tool paths. Surface 3

Tool path generation method Hausdorff distance

Roughing Finishing

h=0.25 h=0.10 h=0.05 h=0.01

#CC Ave Std #CC Ave Std #CC Ave Std #CC Ave Std

MAHO 600 E UG HS 3806 0.040 0.059 19,262 0.025 0.024 62,482 0.017 0.012 210,745 0.005 0.003

FP 1663 0.040 0.054 7152 0.026 0.024 14,921 0.019 0.014 57,320 0.005 0.003

ISO zigzag 5047 0.064 0.063 9334 0.038 0.025 16,652 0.022 0.012 68,889 0.005 0.002

VFAPL 4059 0.054 0.002 9059 0.022 0.025 16,773 0.012 0.013 65,186 0.003 0.002

VFAPR 5374 0.009 0.004 7151 0.009 0.001 9331 0.009 0.001 29,288 0.003 0.001

Haas VF-2TR UG HS 6295 0.053 0.062 29,996 0.032 0.026 102,859 0.019 0.012 312,345 0.005 0.002

FP 3406 0.053 0.062 7091 0.033 0.028 18,016 0.019 0.013 95,136 0.005 0.002

ISO zigzag 5882 0.082 0.064 10,299 0.040 0.024 18,603 0.023 0.012 83,202 0.005 0.002

VFAPL 4321 0.065 0.006 9418 0.025 0.026 17,437 0.013 0.013 68,075 0.003 0.002

VFAPR 5378 0.013 0.010 7157 0.013 0.008 9625 0.011 0.004 32,515 0.004 0.001

Table 6 VFAP vs. conventional tool paths. Surface 3

Tool radius 4 mm Tool path generation method Scallop height(mm)

Roughing Finishing

0.25 0.1 0.05 0.01

Performance Tool path length (mm) Master CAM 35,553.0 72,215.0 128,879.0 –

UG HS 25,991.0 62,825.0 125,070.0 640,866.0

FP 5480.4 8115.6 11,175.0 24,150.0

ISO zigzag 5755.2 8666.1 12,034.0 26,305.0

VFAPL 5336.9 7092.7 9545.7 20,819.8

VFAPR 5489.1 7601.2 10,075.0 22,676.7

Machining Time MAHO 600 E UG HS 2:03:53.1 4:57:21.7 9:52:27.2 18:57:04.1

FP 0:22:15.4 0:33:09.6 0:46:22.0 1:42:32.4

ISO zigzag 0:28:22.1 0:43:39.8 1:01:03.8 2:14:50.2

VFAPL 0:27:14.5 0:41:20.4 0:56:19.7 2:00:41.2

VFAPR 0:10:25.4 0:14:21.7 0:19:22.9 0:39:19.1

Haas VF-2TR UG HS 3:26:00.6 8:13:54.1 16:22:50.4 29:54:09.1

FP 0:45:04.7 1:07:20.4 1:33:35.8 3:24:28.2

ISO zigzag 0:56:13.9 1:26:37.5 2:01:03.5 4:27:22.0

VFAPL 0:55:09.7 1:24:21.2 1:55:52.1 4:08:22.3

VFAPR 0:17:46.1 0:24:56.1 0:33:36.1 1:03:58.7

Advantage rel. to ISO Tool path length (mm) VFAPL 7.3 % 18.2 % 20.7 % 20.9 %

VFAPR 4.6 % 12.3 % 16.3 % 13.8 %

Machining Time MAHO 600 E VFAPL 4.0 % 5.3 % 7.8 % 10.5 %

VFAPR 63.3 % 67.1 % 68.3 % 70.8 %

Haas VF-2TR VFAPL 1.9 % 2.6 % 4.3 % 7.1 %

VFAPR 68.4 % 71.2 % 72.2 % 76.1 %
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Table 8 shows the quality of machined surface for the
rough and finishing cuts evaluated by the stylus profiling.
The rough cut by VFAPL has slightly better quality compared
to ISO zigzag, 7.8 vs. 8.1 μm. Waviness produced by VFAPL
is much lower, 17.8 vs. 31.9. Similarly, the fine-cut VFAPR is
characterized by a slightly better quality 7.0 vs. 7.3 μm and
the improved waviness: 10.7 vs. 14.0 μm. We hypothesize
that the improved waviness is due to a reduced variation of
the rotation angles. However, the main advantage of the meth-
od is the reduction of the length of the tool path and the
machining time while keeping the same quality of the part
surface.

Finally, since the proposed trajectory requires iterative cal-
culations, the computational time might be a concern. There-
fore, Table 9 compares the computational time of the proposed
methods with the benchmark algorithms and the machining
time. The proposed algorithm implemented in MATLAB
(some libraries have been compiled from C) works slower
than the benchmark methods; however, the computational
time is only several minutes. The largest computational time
is 10 min for h=0.01 (about 10,000 CC points). Note that

translating the entire code from MATLAB into C usually de-
creases the computational time by factor 3–10.

8 Conclusions

A newmethod for generation of vector field-aligned tool paths
for 5-axis machining has been presented and analyzed. The
new idea is the numerical generation of a curvilinear grid
adapted to the vector field of optimal directions and the biased
space-filling curve. The method provides up to 70 % decrease
of the machining time with regard to the iso-parametric tool
path, works better than preceding methods based on the non
biased space-filling curves, and outperforms advanced tool
path generation methods developed by MasterCAM and
Unigraphics. The tests against the benchmark methods show
that the kinematic error and the roughness of the workpiece
remain practically unchanged, while the machining time, the
tool path length, and the waviness have been considerably
reduced.

Table 8 Roughness and Waviness of VFAP-BSFC vs. conventional tool paths. Surface 3

Roughness Rα (μm) Standard deviation Waviness (μm) Standard deviation

Machining stage ISO zigzag VFAPL VFAPR ISO zigzag VFAPL VFAPR ISO zigzag VFAPL VFAPR ISO zigzag VFAPL VFAPR

Rough cut 8.1 7.8 6.8 10.5 8.1 3.1 31.9 17.8 12.2 7.5 6.2 1.5

Finishing 7.3 7.1 10.2 9.1 14.0 10.7 4.1 0.7

Table 9 Computational time vs. the machining time

Test Scallop height (mm) Computational time (min) Machining time (min)

Master CAM UG MATLAB/C MAHO 600 E Haas VF-2TR

Zigzag HS FP Zigzag VFAP Zigzag VFAP Zigzag VFAP

Surface 1 0.25 1 1 1 1 3 28 18 45 33

0.10 1 8 2 1 4 44 28 72 52

0.05 1 30 2 1 5 64 40 103 74

Surface 2 0.25 1 1 1 1 6 8 6 33 26

0.10 1 1 1 1 8 12 9 53 41

0.05 1 3 1 1 10 17 13 75 56

Surface 3 0.25 1 1 1 1 2 28 10 56 17

0.10 1 3 1 1 2 43 14 86 24

0.05 1 27 1 1 2 61 19 121 33

0.01 1 54 1 1 2 134 39 267 63
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Appendix A. Space-filling curves

The rectangular grid in (ξ,η) is treated as an undirected
graph whereas tool path generation on the grid-like graph
is a Hamiltonian path problem. All grid cells (graph nodes)
are covered by small disjoint circuits (see Fig. 21). The
circuits are then merged into a single Hamiltonian circuit.

The initial circuits are created by constructing rectangular
cyclic paths over every four adjacent vertices, i.e., by
connecting the vertices on even rows and columns with
the vertices on odd rows and columns, respectively, as
shown in Fig. 21. If the number of rows or columns is
odd, additional virtual circuits are created along the bound-
aries (dashed lines in Fig. 21). Any two adjacent circuits
can be merged into one bigger circuit. The cost of merging
is defined by maximum material removal rate (see
section Biased Space-Filling Curve).

All virtual circuits are initially merged. This is to ensure
that there is no discontinuity of the tool path after removing

Fig. 21 Construction of the
space-filling curve
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the virtual edges from the Hamiltonian path. Furthermore, a
non-virtual circuit A can be merged with a virtual circuit D
only if A is merged with a non-virtual circuit C located on the
opposite side. To enforce this merging dependency, the cost of
merging A and D is set equal to that of merging A and C. The
merging dependency is used to eliminate a possibility of an
inappropriate narrow zigzag with a large number of turns
along the boundaries.

Next, we construct a dual graphG′where each small circuit
in G corresponds to a vertex in G′.

Finally, a minimum spanning tree is constructed by itera-
tively merging circuits using the proposed cost function.
When all circuits are merged into the Hamiltonian path, the
SFC is obtained by removing all virtual edges. Figure 21 il-
lustrates the algorithm.

Appendix B. List of basic notations

VFAP Vector field-aligned path
VFAPR Vector field-aligned path based on the

material removal rate
VFAPL Vector field-aligned path based on the

length of the tool path
SFC Space-filling curve
BSFC Biased space-filling curve
UG-FP Tool path of Unigraphics, option

“Follow Periphery”
UG-HS Tool path of Unigraphics, option

“Helical or Spiral”
CC point Cutter contact point
CL point Cutter location point
(u,v) Parametric coordinates
(ξ,η) Computational coordinates
u(ξ,η),v(ξ,η) Curvilinear grid
t A parameter along the trajectory

(pseudo time)
X,Y,Z Machine coordinates
x,y,z Workpiece coordinates
S(u,v) Part surface
A,B Rotation matrices corresponding to

the two rotary axes
(a b) Rotation angles
T23 The origin of the A-axis in the

B-axis coordinate system
T34 The origin of the B-axis in the spindle

coordinate system
L Length of the tool
(Ix,Iy,Iz) Tool orientation vector
W A point on the surface
RM(W) Material removal rate
V(u,v) Vector field of the optimal directions
(α(u,v),β(u,v))

Dual vector field
((α(u,v)∪β(u,v)=V(u,v)))

FS Smoothness functional
FA Alignment functional
λ Weighting coefficient
Wp,p+1

D (t) Space curve on the surface between
tool positions Wp and Wp+1

distH Hausdorff distance
K Kinematic transformation
wL,wR The left and the right machining strip
h Maximum allowable scallop height

(accuracy)
ε Kinematics error
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