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Abstract
The paper presents a new method to generate efficient milling toolpaths for five-axis sculptured surface machining in an
important case when the vector field of preferred directions (VFPD) forms a star-like, radial configuration. To optimize the
toolpath, a new modification of the radial toolpath aligned with the VFPD called the compact radial zigzag (CRZ) has been
proposed, analyzed, and verified practically. The CRZ is combined with transfinite interpolation (TFI) to treat an irregular VFPD.
The method is designed for the machining of industrial stereolithography (STL) part surfaces characterized by complex geom-
et r ies and sharp ext rema. A demo of the algor i thm is a t h t tps : / /dr ive .google .com/open?id=1OM_
z4cAOUqGu2RPAzkZOIBcEnfptdTq7.

Keywords Material removal rate . Five-axis milling machine . Radial toolpath . STL . Vector field . Redundancy . Moment
invariants

1 Introduction

High-accuracy complex freeform surfaces are used by many
industries, such as aerospace, automotive, shipbuilding, and
medical implant companies. The parts are usually required to
be smooth, but they often include valleys, saddle points, and
sharp extrema. Nowadays, such parts as turbine blades or
high-precision molds are almost exclusively produced on
five-axis machines since they are the most accurate and reli-
able. Toolpath generation for the five-axis machining of
complex-shaped parts is a subject of extensive research in
computer numerical control (CNC)–based manufacturing.

The ultimate goals of toolpath optimization are to reduce
the machining time and increase accuracy. Among the most
common methods of achieving these (contradictory) goals is
the selection of a suitable toolpath pattern, reducing the redun-
dancy of the path, reducing the kinematic error, and control-
ling the scallops between the consecutive tracks. The toolpath
algorithm must also decide whether the toolpath is a single

continuous curve or that it can be subdivided into patches to
optimize the quality.

This introduction considers topological aspects of toolpath
generation and explains why the proposed compact radial zig-
zag (CRZ) toolpath is a suitable option for a certain class of
sculptured surfaces. More surveys on five-axis toolpath gen-
eration can be found in [1–3].

The basic five-axis toolpath patterns are the zigzag (ZZ),
spiral, contour parallel path (CP), and their modifications [2].
Their advantages are simple geometry, a small number of
turns, and a straightforward way of adapting the pattern local-
ly. A great deal of work has been done to improve and modify
these patterns, such as the variety of iso-parametric, iso-scal-
lop, and iso-planar methods.

Unfortunately, most of these methods can be applied only
to parametric surfaces. Moreover, when the optimization in-
cludes the kinematics of the machine, collision avoidance,
machinability of the surface, and the workpiece setup, the
computational complexity of the problem becomes prohibi-
tively high. Therefore, even advanced toolpath optimizations
consider only a subset of the control parameters and the cost
(utility) functions, assuming (oftenwrongly) that the impact of
the remaining parameters is negligible or that they can be
improved by a trial-and-error process.

An iso-scallop [4] and isoplanar [5] tool path intersects the
surface by parallel planes generating iso-curves. The side step is
evaluated based on the scallop height constraints. The method is
robust and is common in commercial systems. It applies to
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compound, trimmed, NURBS, and stereolithography (STL)
models. However, the algorithm often leads to conservative path
intervals in an attempt to ensure the allowable scallop height.

The iso-scallop toolpaths [6–8] are based on the offsetting
of an initial curve (often the boundary [9]). The idea is to
minimize the overlap between tool postures of the neighbor-
ing cutter contact (CC) curves by taking a maximum possible
offset and reducing the number of required tracks. Usually,
ball-end cutters or flat-end cutters are used. Chiou and Lee
[10] extend the method to a generalized cutter. Liu et al. [11]
present an iso-scallop toolpath for a triangular mesh (STL
surface). The recent iso-planar path (ISOP) [12] considers
both the cutting strip width and the machine’s kinematic ca-
pacities. The machining efficiency is improved by iteratively
adjusting the tool orientations.

The iso-level method [13] is a combination of the iso-scallop
path and the requirement of smoothness of the CC curves to
maintain a high feed rate. Some energy functionals for generat-
ing such a toolpath have been derived and analyzed.

The seminal work of Kim and Sarma [14] introduces the
vector field of preferred directions (VFPD). The part surface is
covered by machining patches, each characterized by an opti-
mal direction, corresponding to the maximum machining
strip. The discrete VFPD is then approximated by a continu-
ous vector field, and the corresponding streamlines are con-
structed. The streamlines define the topology of the optimal
toolpaths. The algorithm partitions the streamlines, based on
the so-called basins of attraction (an idea borrowed from the
theory of dynamic systems).

Chiou and Lee [10] split the part surface into machining
patches. For each patch, at least two preferred directions pro-
ducing the maximum machining strip are established, gener-
ating the desired VFPD. Next, instead of generating the
streamlines, the algorithm generates a basic initial path, pro-
ducing the largest average machining strip. The entire toolpath
is then constructed by offsetting the initial path and propagat-
ing the offsets inside the region. The basic path is re-initialized
when the current offset deviates considerably from the VFPD.

Therefore, the basic VFPD approach includes (1) constructing
theVFPD, (2) clustering the surface (optional), and (3) construct-
ing the toolpath for each cluster, using a suitable pattern.

The VFPD for five-axis machining critically depends on
the optimization problem, which may include several utility
functions and possible constraints. Usually, the optimization
reduces the total length of the toolpath or the total machining
time while maintaining the prescribed accuracy. Alternatively,
the user may improve the accuracy while keeping or even
reducing the machining time. The number of CC points may
be reduced for high-speedmilling when the time tomove from
one cutter location (CL) point to the next becomes shorter than
the servo update interval. The VFPD often includes geometric
constraints, kinematic performance of the machine, capacity
of the machine axis, cutting force limits, and cutting

conditions. Clearly, the VFPD depends on the pattern of the
toolpath. In contrast, a suitable toolpath pattern depends on the
topology and geometrical structure of the VFPD. The general
VFPD-aligned toolpath is, therefore, a non-trivial, high-
computational complexity problem which may have a variety
of mathematical formulations.

The VFPD proposed in [10, 14] is based the machining
strip, the increase of which implies the reduction of the
toolpath. However, minimization of the toolpath in the work-
piece coordinates does not necessarily minimize it in the ma-
chine coordinates and does not necessarily minimize the ma-
chining time. “Explicitly, a toolpath with minimum total
toolpath length may turn out to be inferior when the specific
machine tool’s capacities are considered, and in order not to
exceed the limits of those capacities, the machine’s controller
has to keep the feed rate under an inordinately low level, thus
actually prolonging the real machining time” [15].

The seminal works of Makhanov [16], Makhanov and
Ivanenko [17], and later Bieterman and Sandstrom [18] intro-
duce adaptive curvilinear coordinate systems to construct cur-
vilinear zigzag toolpaths for complex-shaped boundaries and
surfaces with islands (complex pocket milling). The corre-
sponding energy functionals provide the smoothness of the
toolpath, and adaptation to the boundaries and to the regions
with large kinematic errors. They also establish constraints to
reduce the redundancy of the path by penalizing too small or
too large machining strips between the consecutive tool
tracks. However, since the adaptive curvilinear coordinates
must be topologically equivalent to a Cartesian coordinate
system, the application of this method is limited to surfaces
which can be easily parameterized.

In order to include the machine kinematics, Hu and Tang
[15] and Chen et al. [19] introduce a machine-dependent
VFPD based on the effective machining removal rate
(EMRR). The EMRR is defined as the product of the machin-
ing strip and the feed rate, evaluated numerically in the work-
piece coordinate system (WCS). The feed rate is subject to the
velocity and acceleration limits of a particular machine. There
are ten such constraints defined at each CC point for the ma-
chine’s five axes. Fitting the CC curves to the corresponding
EMRR streamlines is performed by offsetting an initial curve
using an extended version of Chiou and Lee’s approach. This
approach recursively alternates between the points with the
maximum EMRR and the standard iso-cusp height expansion
scheme. The resulting five-axis toolpath achieves, for some
complex freeform part surfaces, substantial savings in total ma-
chining time over the existing toolpath generation algorithms.

Hu et al. [12] (ISOP) extend this approach by including
five additional constraints imposed on possible jerks of the
machine axis (totaling 15 constraints). The ISOP expansion
methodology is combined with a special index, defining one
principal direction to drive parallel planes, to maximize the
overall EMRR on the entire surface.
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Moodleah et al. [20] use a simplified version of the EMRR,
assuming that only the rotation axes exceed the machine speed
limit and that the workpiece is machined with the maximum
linear speed allowed for the particular material. The simplified
EMRR is combined with a curvilinear zigzag that is aligned
with the prescribed VFPD. The method has been verified on
complex-shaped STL surfaces, e.g., a human face mask and
models of human teeth (incisor, premolar, molar, and canine).
The disadvantage of this approach is a possible abrupt stop of
the tool by the controller to comply with the machine acceler-
ation limits. This sudden stop may leave unexpected marks on
the surface. However, the algorithm can be applied to semi-
finish cuts with an additional manual polishing or an addition-
al fine cut of the surface.

Many preceding generation methods based on the maximi-
zation of the machining strip do not consider a simple radial
zigzag (SRZ) (see Fig. 1a) due to its redundancy around the
pole. Some papers completely exclude this pattern from the
set of the standard topologies. For instance, Kim and Sarma’s
design is not suitable for SRZ. Zou et al. [13] observe only
three basic patterns: direction parallel, contour parallel, and
spiral. A survey [2] mentions that “based on the strengths
and limitations of the different path patterns investigated
above, the direction parallel and contour parallel paths are
considered the most widely used ones due to their simplicity
and adaptability in engineering applications.” The recent ad-
vanced toolpath generation methods based on the machining
strip tensor flow [21, 22] are also designed in such a way that

the SRZ has been practically excluded or requires complicated
geometric transformations.

The methods that are based on the EMRR and the kinematic
constraints show thatmany STL surfaces characterized by sharp
extrema generate a star-like (radial) VFPD. Of course, moving
along the radial directions is inevitably redundant. However, “a
collection of individually-efficient cuts does not guarantee the
quickest machining of the surface” [14]. The radial path is not
necessarily the worst in a global sense although it could be the
worst choice locally. One of the simplest examples is a cone
(Fig. 1). An analysis of the machining time for the contour
parallel pattern and radial pattern reveals that the time depends
on the height and the radius of the cone, the redundancy of the
radial lines, and the rotations required to perform the alternative
circular cut. In other words, the radial path often wins on ma-
chines with slow rotation axes and fast linear axes.

Furthermore, the increasing complexity of industrial five-
axis parts makes it virtually impossible to generate a single CC
curve that follows the VFPD. Therefore, an efficient cutting
strategy could include the decomposition of the VFPD. Such
decomposition includes radial patterns formed around peaks
and saddle points.

A decomposition-based strategy to cut a complex STL sur-
face includes the following:

& Flattening (surface parametrization, see Section 3.1)
& Selection of the cost function and constraints
& Generation of the VFPD

Fig. 1 Examples of toolpath
patterns on a conical surface.
a Simple radial zigzag (SRZ).
b Contour parallel path (CP).
c Compact radial pattern (CRZ).
d CRZ pattern with transfinite
interpolation (CRZT)
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& Decomposition of the VFPD into clusters
& Classifying the clusters. On the most basic level, we have

the ZZ, the contour/spiral (CP), and the SRZ
& Toolpath generation, including CRZ
& Merging the toolpaths at the boundaries of the clusters

It should be noted that there exists a variety of advanced
techniques to decompose the part surfaces into subregions to
cut the surfaces patch by patch. Examples are segmentations
based on the complexity of the CC points [23], Gaussian
curves [24, 25], clustering of the normal vectors [5], and com-
bining the orientation of the normal vectors with the principle
of a minimum tilt angle [26]. A tensor field [21, 22] and the
streamlines of a VFPD [14] have been used for surface de-
composition and toolpath generation.

However, to the best of our knowledge, the use of the radial
pattern has been completely overlooked. The detection and the
generation of such a toolpath have not been properly analyzed
and verified.

Therefore, the focus of this paper is radial patterns.We detect
them, isolate them, and apply a new toolpath generation algo-
rithm called the compact radial zigzag based on the partition of
the radial pattern into layers, to reduce the redundancy.

We show that in many cases, the CRZ outperforms the
circular, spiral, zigzag, purely radial pattern, and recent iso-
planar toolpath generation methods in terms of the machining
time and accuracy.

An example of a CRZ toolpath is shown in Fig. 1c and d.
Note that the new pattern is redundant and includes additional
turns. However, in many cases, moving along the radial direc-
tion combined with the reduction of the redundancy outper-
forms conventional patterns. In this paper, we also introduce
an improved version of the CRZ (called CRZT), based on
fitting the radial tracks to the optimal directions using transfi-
nite interpolation (TFI) [27]. TFI is able to treat patterns that

are only approximately radial (not converging to one point,
but converging to a relatively small region on the surface).

The CRZ is applied to the STL surfaces with a variety of
cost functions such as the EMRR, kinematic error, and varia-
tion of the rotation angles. The machining results show that
the algorithm outperforms conventional machining strategies
for surfaces characterized by high curvatures around the peak.

CRZ has been tested against NX11 (formerly UG) [28]
using the helical-and-spiral (HS) pattern and the follow pe-
riphery (FP) pattern. It has also been tested against a recent
ISOP [12] and the conventional radial toolpaths. The numer-
ical tests and practical machining show that the CRZ can re-
duce the machining time by 77%, while keeping the kinematic
error and the scallops within the prescribed accuracy range.
Our practical machining (Appendix) reveals that the rough-
ness of the produced semi-finish cut is similar to that of the
competing methods.

2 Background

This section introduces the basics of five-axis kinematics, ki-
nematic error, and the VFPD based on the EMRR.

2.1 Five-axis milling machine

A five-axis milling machine is controlled by a sequence of
commands (G code), composed of three Cartesian coordinates
of the tooltip and two rotation angles, to establish the orienta-
tion of the tool. Denote the first rotary axis by B and the
second rotary axis by A (Fig. 2). Introduce the following co-
ordinate systems: workpiece coordinates (O1), coordinate sys-
tem of the first rotary part (O2), coordinate system of the
second rotary part (O3), and coordinate system of the spindle

Y

Z1

Workpiece 

coordinates

O1
Y1

X1

B-table

X-

A-table

O4

O2

O3

Z

O1 O2

O3
O4

Y1

X1

Z1

Y2

X2

Z2

Y3

X3

Z3

Y4

X4

Z4

T12

T23

T34 - L

(a) (b)

Fig. 2 Five-axis milling machine
with the rotary axes on the table.
a Haas VF-2TR. b Kinematic
transformation
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(O4). The configuration of a five-axis milling machine is char-
acterized by the following:

& RotationmatricesA and B, corresponding to the two rotary
axes

& Translations T12, T23, and T34, where T12 is the coordinate
of the workpiece origin in the B-axis coordinate system,
T23 is the coordinate of the B-axis origin in the A-axis
coordinate system, and T34 is the coordinate of the A-axis
origin in the spindle coordinate system

& The length of the tool (L) is treated as an additional trans-
lation (T4), where T4 is equal to (0, 0, L) or (0, 0, −L),
depending on the orientation of the z-axis. Figure 2 dis-
plays the configuration used in this study.

2.2 Kinematic error

The coordinate transformation from the WCS to the machine
coordinates is given by the kinematic transformation as follows:

M ¼ K a; b;Wð Þ≡A a½ � B b½ � W þ T12ð Þ þ T 23ð Þ þ T34−T 4;ð1Þ

where W = (x, y, z) and M = (X, Y, Z) denote the workpiece and
the machine coordinates, respectively, and a and b are the rota-
tion angles required to establish a prescribed orientation of the
tool. For instance, a ball nose tool is often inclined by a small
angle of 5–15° [12], relative to the normal of the surface in the
plane (n, f). A flat-end tool is also inclined to match the curva-
ture of a surface [29].

The inverse transformation is given by

W ¼ K−1 a; b;Mð Þ≡B−1 b½ � A−1 a½ � M þ T4−T 34ð Þ−T23

� �
−T 12:

ð2Þ

Let WD
p;pþ1 tð Þ≡WS t; sp; spþ1

� �
be a space curve between

tool positions Wp and Wp + 1 extracted from the machined

surface S(u, v), where t ∈ [sp, sp + 1] is a parametric coordinate
along the curve. This curve is called the desired trajectory. The
desired and the actual trajectory can differ drastically. The
distance between them is machine dependent and is called
the kinematic error (Fig. 3).

The tool inclination implies that the CC points are different
from the CL points (Fig. 4). However, the machine under-
stands only the CL points. Therefore, the G code needs an
additional coordinate transformation between the local basis
and theWCS. The local basis with the origin at the CC point is
given by (n, f, τ), where n is the surface normal vector, f is the
normalized projection of the direction vector connecting two

consecutive CC points on the tangent plane, and τ ¼ f�n
‖ f�n‖

(see Fig. 4). Coordinates of the CL points in the WCS are
given by [30]

CL ¼ CCþ RlocalRTRIT tool ð3Þ
with Ttool = [−r, 0, 0] for a flat-end mill and Ttool = [0, 0, r] for
a ball-end mill, where r is the radius of the tool and RI and RT
are the rotation matrices corresponding to the inclination and
tilt angle. Rlocal is the transformation matrix composed of the
local basis vectors given by

Rlocal ¼
f x τ x nx
f y τ y ny
f z τ z nz

0
@

1
A: ð4Þ

The actual trajectory Wp,p + 1 is obtained using Eq. (2).
First, for every Wp ∈ WD, the transformation Mp ¼ K

ℜp;Wp
� �

is invoked. Second, the rotation angles ℜ ≡ℜ(t)
and the machine coordinatesM = (X(t), Y(t), Z(t)) are assumed
to change linearly between the prescribed points sp and sp + 1

as follows:

Mp;pþ1 tð Þ ¼ Lpþ1 tð ÞMpþ1 þ Lp tð ÞMp;
ℜ tð Þ ¼ Lpþ1 tð Þℜpþ1 þ Lp tð Þℜp;

ð5Þ

CC pointCL point

Wp Wp, p+1 (t)

W
p, p+1
D (t)

Wp+1 ε

Fig. 3 Kinematic error: the
desired trajectory versus the
actual trajectory
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where Lpþ1 tð Þ ¼ t−sp
spþ1−sp , Lp tð Þ ¼ spþ1−t

spþ1−sp , sp ≤ t ≤ sp + 1, and

ℜ = (a, b) is a pair of the rotation angles. Transforming M
back to W for every t yields the actual trajectory of the tool
tip in the WCS

Wp;pþ1 tð Þ ¼ K−1 ℜ tð Þ;Mp;pþ1 tð Þ� � ¼
K−1 Lpþ1 tð Þℜpþ1 þ Lp tð Þℜp; Lpþ1 tð ÞMpþ1 þ Lp tð ÞMp
� �

:

ð6Þ

To represent the toolpath in terms of the WCS, we elimi-
nate Mp and Mp+1 by Mp ¼ K ℜp;Wp

� �
andMpþ1 ¼ K

ℜpþ1;Wpþ1

� �
.

Substituting Mp and Mp + 1 yields

Wp;pþ1 tð Þ ¼ K−1 Lpþ1 tð Þℜpþ1 þ Lp tð Þℜp;Lpþ1 tð ÞK ℜpþ1;Wpþ1

� �þ Lp tð ÞK ℜp;Wp
� �� �

: ð7Þ

Finally, the kinematic error is measured by the
parameterization-invariant Hausdorff distance given by

distH WD;W
� �

¼ max max
a∈WD tð Þ

min
b∈W tð Þ

‖a−b‖; max
a∈W tð Þ

min
b∈WD tð Þ

‖a−b‖
� �

; ð8Þ

where ‖ ⋅ ‖ denotes the Euclidean distance. The total kinematic
error is the sum of the Hausdorff distances between the desired
trajectoryWD

p;pþ1 tð Þ≡WD sp; spþ1; t
� �

and the actual trajectory

Wp, p + 1(t) =W(sp, sp + 1, t).

ε ¼ ∑
p
distH WD

p;pþ1 tð Þ;Wp;pþ1 tð Þ
� �

: ð9Þ

The average kinematic error is then defined by

ε
0 ¼ ε

NCC−1
; ð10Þ

where NCC is the number of the CC points.
In many cases, the machining quality is defined by the

maximum error given by

εmax ¼ max
p

distH WD
p;pþ1 tð Þ;Wp;pþ1 tð Þ

� �� �
: ð11Þ

The EMRR between two consecutive CC points (W1

and W2) is defined as the material removed per unit
time when the tool moves from W1 to W2. An increase
of the EMRR should reduce the machining time if there
is no redundancy. Evaluation of the EMRR for a given
type of milling machine has been developed in [12, 15,
19, 31]. We follow a simplified procedure [20, 32],
which considers only the velocities of the machine axes.
For a complete model, including the acceleration and
jerks, we refer the reader to [12]. Let W0 be an arbitrary
CC point on the surface, a0 and b0 the corresponding
rotation angles, and let ΩW0 be a geodesic circle with
the center at W0 and radius d0. Let us sample ΩW0 so
that Wi∈ΩW0 ; i ¼ 1; 2; :::;m0. Note that ΩM0 ¼ K ΩW0ð Þ,
where M 0 ¼ K W0; a0; b0ð Þ is an irregular closed curve.
Denote the feed rate by F and the machining strip at W0

in the W0W
���!

i direction by l0,i. The EMRR in the direc-

tion W0Wi
���!

is given by

O1 X1

Y1

Z1

WCS

CL

CC f

n

Fig. 4 Flat-end cutter.
Transformation from CC to CL
points
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R0;i ¼ Fl0;i: ð12Þ

Let v*x ; v
*
y ; v

*
z ; v

*
a; v

*
b be the maximum speed of the corre-

sponding axis.
Consider Mi≡ X i; Y i; Zið Þ ¼ K Wi; ai; bið Þ. The machining

time from M0 to Mi is given by [12]

t ¼ d0
F

¼ X i−X 0

vx
¼ Y i−Y 0

vy
¼ Zi−Z0

vz
¼ ai−a0

va
¼ bi−b0

vb
; ð13Þ

where vx, vy, vz, va, and vb are the actual speeds of the corre-
sponding axis.

Hence,

vx ¼ F
X i−X 0

d0
; vy ¼ F

Y i−Y 0

d0
; vz ¼ F

Zi−Z0

d0
;

va ¼ F
ai−a0
d0

; vb ¼ F
bi−b0
d0

:

ð14Þ

Consequently, F in Eq. (12) is replaced by

F0;i ¼ min
v*xd0
X i−X 0

;
v*yd0
Y i−Y 0

;
v*z d0
Zi−Z0

;
v*ad0
ai−a0

;
v*bd0
bi−b0

 !
: ð15Þ

Thus,

R0;i ¼ F0;il0;i: ð16Þ

We call the direction W0W*
���!

optimal if
W* ¼ argmaxi R0;i

� �
. In other words, W∗ maximizes the

EMRR in the set of sample directions. Note that for any inter-
nal CC point, there are at least two opposite optimal direc-
tions. This creates a 3D bidirectional VFPD or the orientation
field (OF). The total machining time is then given by

T ¼ ∑
NCC−1

k¼1
tk ; ð17Þ

where tk ¼ lCCk
Fk

(where lCCk is the length of the machining

curve between CCk and CCk + 1 and Fk is the actual feed rate)
and NCC is the number of CC points.

3 Parameterization of the STL surface
and generation of the toolpath

To detect the star-like regions, we flatten the STL surface onto
a parametric domain. The EMRR vector field on the surface is
transferred into the parametric domain, generating a 2D OF.
The star configurations are detected by rotationally invariant
moments [33]. To reduce the redundancy, the new CRZ
toolpath consists of layers with a varying angular step between
the tracks. The CRZ can be combined with TFI to treat irreg-
ular configurations.

3.1 Parametrization of the STL surface

To create a 2D OF and generate the required toolpath, we flatten
(parameterize) the STL surface. The parameterization is a bijec-
tive (invertible) map between the surface and a triangulated pla-
nar domain (D), where each point in D corresponds to exactly
one point on the surface. The OF is accordingly mapped ontoD.

Maps that minimize the angular distortion, or shear, are
called conformal (harmonic) maps. Riemann’s theorem guar-
antees that a conformal map always exists for a smooth sur-
face on a simply connected domain [34]. Therefore, one can
argue that with a sufficient number of vertices, the STL sur-
face can be flattened, with a little angular distortion [35].

One of the most popular flattening algorithms is the graph
embedding method [36]. The boundary vertices are mapped
onto the boundary of the (convex) planar region. The positions
of the remaining vertices are obtained by solving a linear system

Φu ¼ 0
Φv ¼ 0

;

	
ð18Þ

where

Φi; j ¼

− ∑
k≠i

Φi;k ; if i ¼ j;

ωi; j; if i; jð Þ∈ E;

0; otherwise:

8>>><
>>>: ð19Þ

If the weights ωi, j defined for each edge (E) are positive
and the matrix is symmetric, the mapping is guaranteed to be
bijective [35].

Currently, several free-boundary parameterization
mappings have been proposed, such as the least-square
conformal map [37], ABF++ [38], and the harmonic
map [39]. We use a shape-preserving parameterization
[40] derived from solutions of linear systems similar
to Eq. (18), based on convex combinations. The algo-
rithm generates a well-behaved smooth mapping onto a
rectangle or a circle.

The parameterization translates the problem of toolpath
generation from 3D to 2D. The CC points are arranged in a
planar region (D) in the (u, v)-plane, and the final toolpath is
obtained through inverse mapping [41–44].

3.2 Detection of the radial patterns

The SRZ is a particular case of the ZZ path in which one
boundary is represented by a single point, while the other
boundary is an open or a closed curve (Fig. 5).

The EMRR approach often generates star-like configura-
tions which require a radial path (see Fig. 6). Such patterns can
be detected and localized.
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There exist a number of algorithms to detect radial patterns.
The most popular are the phase portrait analysis [45], moment
invariants [46], Rankine model of flows [47], linear affine
model [48], and topological analysis [49]. Unfortunately, a
majority of the methods are designed for a classical VFPD
where each vector has a single direction. In our case, we deal
with an OF. Therefore, the detector must be flip invariant. In

other words, if the direction of a vector changes to the opposite
direction, the moment must retain the original value. Also, the
detector must be scale, translation, and rotation invariant.

Let us represent the EMRR vector by the complex number
Ru + iRv, defined in the local coordinate system with the origin
at the CC point. Define

θ u; vð Þ ¼
arctan

Rv

Ru

� �
; if Ru≠0;

−
π
2
; otherwise:

8><
>: ð20Þ

Clearly, psi is independent on the direction of the vector
Ru + iRv. Therefore, f(u, v) = eiθ(u, v) is flip invariant. The OF is
defined on a 2D triangular mesh in the parametric domain
(u, v). Complex moment cpq is given by [33, 50]

cpq ¼ ∫
∞

−∞
∫
∞

−∞
uþ ivð Þp u−ivð Þq f u; vð Þdudv: ð21Þ

We replace the integral ∫
∞

−∞
∫
∞

−∞
by an integral over a sampling

circle with radius (Rs). The corresponding orientations inside

Fig. 6 Examples of radial OFs.
aCone. bOF of the EMRR, cone.
c Saddle. d OF of the EMRR,
saddle surface

Fig. 5 Radial zigzag toolpath
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Rs are evaluated by barycentric interpolation [51]. In polar
coordinates

cpq ¼ ∫
0

Rs

∫
2π

0
rpþqþ1ei p−qð Þφ f r;φð Þdrdφ; ð22Þ

Substituting f(u, v) = eiθ(u, v) yields

cpq ¼ ∫
0

Rs

∫
2π

0
rpþqþ1ei pφ−qφþθ r;φð Þð Þdrdφ: ð23Þ

Note that 0 ≤φ ≤ 2π, whereas − π
2 ≤θ<

π
2.

If (r,φ) = eiθ(r,φ) is rotated by angle α,
fnew(r, φ) = ei(θ(r,φ) − α). Clearly, cpq, new = ei(p − q + 1)αcpq.
Therefore, any moment constructed as

∏
n

j¼1
cp jq j

with ∑
n

j¼1
pj−q j þ 1
� �

¼ 0 ð24Þ

is rotationally invariant [46].
A change of variables û ¼ u−u and v̂ ¼ v−v and normal-

izing cpq imply the translation and scale invariance as follows:

cpq ¼ 1

vγ
∫
∞

0
∫
∞

0
û̂þ iv̂̂ð Þp û̂−iv̂̂ð Þq f û̂; v̂̂ð Þdû̂dv̂̂; ð25Þ

where

γ ¼ pþ qþ 2

2
; v ¼ ∫

þ∞

−∞
∫

þ∞

−∞
χ û̂; v̂̂ð Þdû̂dv̂̂

and

χ u; vð Þ ¼ f 1; if u; vð Þ∈Ws

0; otherwise
;

u ¼
∫

þ∞

−∞
∫

þ∞

−∞
uχ u; vð Þdudv

∫
þ∞

−∞
∫

þ∞

−∞
χ u; vð Þdxdy

;

v ¼
∫

þ∞

−∞
∫

þ∞

−∞
vχ u; vð Þdudv

∫
þ∞

−∞
∫

þ∞

−∞
χ u; vð Þdudv

:

Finally, Flusser et al. [33] derive a set of independent mo-
ments of the order p + q ≤ 2 as follows:

M 2 ¼ c01; c00c02; c11c02; c10c202; c20c
3
02


 �
: ð26Þ

The remaining second-order moments can be obtained
from M2 by multiplication, involution with an integer expo-
nent, and complex conjugation. To classify the patterns, we
apply a straightforward test to compare vectorM2 with a tem-
plate vector (M2,pattern), using a classification threshold (ζ)

[52, 53]. Note that a decision tree or neural network can be
used for this classification [54, 55]. However, in our case, the
above simple test works well. As an example, consider the
detection of star, curl, spiral, and shear patterns, shown in
Fig. 7. The tests have been constructed by adding Gaussian
noise with a zero mean and a standard deviation, σ = 0.2, 0.3,
and 0.4 [56]. The classification has been verified using 50
random samples for each configuration. The recognition rate
(shown in Table 1) indicates excellent accuracy.

We are interested in the star patterns. A template star is
evaluated numerically on the unit square. The second-order
moments of the pattern are given by

M 2;star ¼ 0; 0:0948þ 0:0032i; 0:0177; 0;−0:0002f g: ð27Þ

The tested OFs are interpolated onto a unit square using the
same grid size. We define a moving square window. For each
position, we evaluated a sequence of moments with an in-
creasing size of the window, creating a pyramid structure
[46]. The largest window satisfying ‖M2, star −M2‖ ≤ ζ, where
ζ = 0.01 is a threshold, is selected.

3.3 Scallop height and toolpath interval

The scallop height (h) indicates how close the machined sur-
face is to the design surface between the consecutive tool
tracks (Fig. 8).

The toolpath interval (l) is the maximum distance between
two subsequent passes of a cutter such that the scallop height
is under a prescribed limit (h). For a ball-end mill with the
radius (r)

lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8hrR

0

R
0 � r

s
; ð28Þ

where R′ is the radius of the surface curvature, R ′ + r is
for a convex surface, and R ′ − r is for a concave sur-
face. The formula has been derived with the assumption
that h << R′ [57].

Equation (28) requires an evaluation of the curvature
at a CC point on the STL surface across the feed direc-
tion. A straightforward approach is to fit a parametric
surface to the local neighborhood of the CC point and
use the parametric derivatives to evaluate the curvature.
A quadric surface is the lowest-order interpolation suit-
able for computation of the second-order derivatives
[58]. Under the implicit assumptions of low surface var-
iation, high sampling frequency, and sampling regulari-
ty, the quadric approach can produce accurate results. A
cubic bivariate polynomial surface patch with con-
straints is proposed in [59]. A recent technique employs
the first- and the second-order Taylor series [60].
Second-order rational polynomial fitting is proposed in
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[19]. However, the above methods show a significant
deterioration in the accuracy when irregular sampling
(such as STL) is involved.

An early technique which avoids surface fitting was pro-
posed in [61]. The approach is based on Euler’s formula for
the curvature in the direction θ.

Design surface

Scallop surface

h

CC

l
CL

Fig. 8 Scallop height and the toolpath interval

Table 1 Recognition rate

Pattern Standard deviation, σ

σ = 0.2 σ = 0.3 σ = 0.4

Star 100 98 86

Curl 100 94 88

Spiral 98 96 84

Shear 98 92 90

Average recognition rate 99 95 87

Fig. 7 Sample patterns subjected
to Gaussian noise. From left to
right: original pattern, noise level
0.2, 0.3, and 0.4. a Curl. b Star.
c Spiral. d Shear
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k ¼ kminsin
2 ψð Þ þ kmaxcos

2 ψð Þ; ð29Þ
where ψ is the angle between the principal direction (Tmin) and
the tangent (Tψ). The circle passing through the points is
computed, and the curvature of this normal section is estimat-
ed as the inverse of the radius of the circle. Combining this
with the Euler formula yields the principal curvatures kmin and
kmax. A similar approach is introduced in [62]. The main prob-
lem with the above algorithms is that the circular arc may not
be an accurate approximation of the normal section.

Tensor averaging methods [63, 64] evaluate the average of
the curvature tensor over a small patch on the surface. The
curvature of a polyhedron is zero within a face and infinite
along the edges, but its average over the patch is finite.
Unfortunately, tensor averaging methods may produce large
errors for certain vertex arrangements.

In this paper, we use an efficient and robust method
[65] (see also [32]) that is free of degenerate configu-
rations. The surface properties are evaluated per face.
Then, each value is estimated per vertex as a weighted
average over the adjacent faces. The per-face computa-
tions are based on the finite difference derivatives. The
second-order fundamental tensor of each facet (Πf) is
computed. The corresponding tensor (Πvi ) at vertex vi
is a weighted sum of Π f i; j , where fi, j is the adjacent

facet of vertex vi. The weights are evaluated using the
Voronoi area. The curvature is approximated by κ(s) =
sΠ sT, where s is a unit direction vector [66]. When the
CC point lies on an edge, a re-meshing is used so that
the CC point becomes a vertex.

3.4 Transfinite interpolation for the radial vector field

Grid generation using TFI is characterized by fast exe-
cution, minimal input, automatic node connectivity, and

good correlation between the boundary nodes and the
interior mesh [27].

First, consider the case when the preferred OF is close
to the radial pattern. Introduce a computational region
Δ = {0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1}. The grid is a mapping from Δ
onto a region D in the parametric coordinates (u, v). Let
Rk(ξ), k ¼ 1;N η and Tp(η), p ¼ 1;N ξ be the boundary and
inner coordinate curves in the parametric space (u, v) to be
transformed into the computational space (ξ, η) (Fig. 9).
Define the coordinate transformation by

F ξ; ηð Þ ≡ u ξ; ηð Þ; v ξ; ηð Þð Þ
¼ ∑

p
Tp ηð Þψp ξð Þ þ ∑

k
Rk ξð Þφk ηð Þ−∑

k
∑
p
Tp ηkð Þψp ξð Þφk ηð Þ;

ð30Þ

where ψp(ξ) and φk(η) are the blending functions such that

ψp ξið Þ ¼ 1; p ¼ i
0; otherwise

; i ¼ 0;N ξ

	

φk η j

� �
¼ 1; k ¼ j

0; otherwise
; j ¼ 0;N η:

	

Clearly,

F ξ; ηkð Þ ¼ Rk ξð Þ; k ¼ 0;N η;

F ξp; η
� � ¼ Tp ηð Þ; p ¼ 0;N ξ:

ð31Þ

For simplicity, assume that the OF converges to a single
pointOR (Fig. 9) and Nξ =Nη = 1. The boundaries of the com-
putational region and the blending functions are selected by
ξ0 = η0 = 0, ξ1 = η1 = 1, ψ0(ξ) = 1 − ξ, ψ1(ξ) = ξ, φ0(η) = 1 − η,
and φ1(η) = η. TFI generates the so-called O-grid with the
boundary curves defined by T0(η), T1(η), and R0(ξ) = R1(ξ)
(Fig. 9). Note that OR = T0(η) is a curve degenerated into a
single point while R0(ξ) = R1(ξ) is a linear cut connecting OR

and T1(η).

η

ξ

v

u

0 ξ = 1 ξ

0 η

(a) (b) (c)

= R

v

u

1 η

Fig. 9 O-grid generated by TFI. a Computational domain. b Boundary curves. c TFI grid
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It is often the case that the EMRR vectors form an
irregular star; i.e., the OF does not converge to one
point but to a relatively small region in the parametric
domain. In this case, we select important vectors. For
instance, the important vectors can be defined at CC
points with a high curvature or large rotation angles.
An important vector can also be a representative of a
cluster characterized by similar radial directions. In this
case, we interpolate the boundary of the parametric re-
gion and include the important vectors or the flow lines,
representing constant generalized coordinate lines [27].
Figure 10a and b exemplify the case characterized by
four generalized coordinate lines, R0(ξ), R1(ξ), R2(ξ),
and R3(ξ); a cut, R4(ξ) = R0(ξ); and two circular bound-
aries, T0(η) and T1(η) (curvilinear disks). The blending
functions are:

N ξ ¼ 4;N η ¼ 1; ξi ¼ iΔξ;Δξ ¼ 1

4
; i ¼ 0;N ξ; η j ¼ j; j ¼ 0;N η;

φ0 ηð Þ ¼ 1−η;φ1 ηð Þ ¼ η;

ψi ξð Þ ¼
0; ξ < ξi;
ξ−ξi−1ð Þ=Δξ; ξi−1≤ξ < ξi;
1− ξ−ξið Þ=Δξ; ξi≤ξ < ξiþ1;
0; ξ > ξiþ1:

8>><
>>:

ð32Þ

The important EMRR vectors represent clusters pro-
posed in [67] for simplifying and smoothing the VFPD
(Fig. 10). The clustering is based on a hierarchical tree
and the angular distance between the vectors. The im-
portant vector is a weighted average of the members of
the cluster.

Finally, TFI is adapted to the acceptable toolpath in-
terval by bisection. The Hausdorff distance between the
neighboring tracks, Pi(ξ) = S(F(ξ, ηi)) and Pi + 1(ξ) =
S(F(ξ, ηi + 1)), is evaluated. If distH(Pi, Pi + 1) < li, where
li is defined by Eq. (28), a new grid line is inserted.

4 CRZ

As noted, the most important drawback of the radial toolpath
is the redundancy. In this section, we propose a simple but
efficient algorithm to reduce the redundancy by decomposing
the radial path into layers and using TFI.

4.1 Redundancy

Redundancy is characterized by an area covered by the
tool several times when the actual interval (l) between
two adjacent paths is smaller than the maximum
allowed interval (lmax). Consider two adjacent paths,
Pi(s) and Pi + 1(s) (Fig. 11), and let lmax,i(s) be the max-
imum allowed toolpath interval along Pi(s) and li(s) the
actual distance. Omitting the subscript i, the redundancy
is defined by [68]

w sð Þ ¼ lmax sð Þ−l sð Þ
lmax sð Þ : ð33Þ

R1 (ξ)

R3 (ξ)

R2 (ξ)

T1 (η)

R0 (ξ)

=R4 (ξ)

T0 (η) the centroid

R1 (ξ)

R2 (ξ)

T1 (η)

R0 (ξ)

=R4 (ξ)

the centroid

R3 (ξ)

T0 (η)

(a) (b)

Fig. 10 Irregular OF and a corresponding TFI grid. a Important vectors. b TFI grid

max, ( ) (s )i k i kl s l�

1( )iP s�( )iP s

( )i jl s

Maximum allowable

distance

max, ( ) ( )i j i jl s l s�

High redundancy

Low redundancy

Fig. 11 Redundancy of a toolpath
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We call a CC point (i, j) redundant if wi, j >w0, where w0 is
a prescribed threshold.

For a radial toolpath, the redundant points form a
cluster around the pole (Fig. 12). The isolated redundant
points can be removed using the outlier removal tech-
nique [69]. The boundary of the cluster is approximated
by a convex hull and smoothed by cubic spline interpo-
lation (Fig. 12).

4.2 Minimization of the machining time

The CRZ minimizes the machining time using a partition of
the region dividing a star-like toolpath into several subregions.
The subregions are characterized by the increasing the
stepover between the radial tracks.

Consider the CRZ in Fig. 13. The original radial grid is
displayed in Fig. 13a. The machining is performed along a
radial zigzag in each layer. The machining time
(t ¼ t R1;R2; :::;RNPð Þ ) is a function of the partition of the
radius (R) into R1;R2; :::;RNP . Consider a single partition
point R1 and t1 = t1(R1). Clearly, if R1 = R1,1 is small, the ma-
chining time increases due to additional zigzag turns (ABCD
in Fig. 13b). However, if R1 = R1,2 is large, the machining time
is close to t0 = t0(R) (Fig. 13c). Numerical experiments show

R

1,1R

R

A
B C

D

A

B C

D

1,2R

R

A

B
C

D

*

1 newR R R= −

max ( )l s max ( )l s

R
newR

(a) (b)

(c) (d)

Fig. 13 Minimization of the
machining time. a Radial pattern.
b Small (insufficient) split.
c Excessive split. d Optimal split

Fig. 12 Cluster of redundant points, saddle surface (Fig. 6c)
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that for surfaces with a sharp peak or a saddle, the function
t1 = t1(R1) often has a global minimum on [0, R] (Fig. 13d).

The function t1 = t1(R1) is an excellent test of the applicability
of the method. If t1(R1) ≥ t0(R) for ∀R1, the method is not appli-
cable. A typical graph of the machining time t1 = t1(R1) is shown
in Fig. 14 (R1 and t1 have been normalized). Let
R*
1 ¼ argminR1

t1 R1ð Þð Þ, and let t*1 ¼ t1 R*
1

� �
be the correspond-

ing machining time using the SRZ on the disk R*
1;R

� �
.

Consider a reduced region Rnew ¼ R−R*
1. Repeat the pro-

cedure for t2 = t2(R2), R2 ∈ [0, Rnew], obtaining R*
2 and t*2.

The partition makes it possible to set up the maximum
machining strip lmax at every circular boundary, reduc-
ing the redundancy and therefore reducing the machin-
ing time. The process is repeated until the total machin-
ing time cannot be improved. The small remaining area
around the pole can be machined by a circular or a
radial path (Fig. 15).

Note that for simplicity, Figs. 13, 14, and 15 present a
toolpath for an ideal circular configuration. However, the
CRZ works on irregular configurations, such as in Fig. 16a
and b. The calculation of the total machining time for each
iteration of the CRZ is computationally expensive. A simpli-
fied version of the algorithm is based on an evaluation of the
redundancy. If wi(s) is sufficiently large, the next partition
point Ri is inserted. Although this approach is heuristic and
requires a threshold, our numerical experiments show that
w(s) ≥w0 = 0.5 produces good results.

5 Toolpath generation

The CRZ toolpath generation algorithm can be summarized as
follows:

Input includes the STL surface (S), tool radius (r), maxi-
mum allowed scallop height (h), parameters of the kinematic

*

1R

*

2R

*

3R
Circular 

or radial path

Zigzag

path

Fig. 15 Final toolpath with three partition points and a circular path
around the pole

Circular or 

Radial path

Zigzag 

path *

1R

*

3R

*

2R

(a) (b)

Fig. 16 CRZ path on a
rectangular configuration. a CRZ
layers. b CRZ toolpath

1,1R *

1R 1,2R

1R

1t

*

1t

Fig. 14 Typical graph of the machining time with one partition point
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transformation (1) (Section 1), and threshold for the redundan-
cy coefficient (optional, if the threshold method is used).

1. Generate the EMRR-OF on S.
2. Flatten S onto the parametric domain (D) by conformal

mapping (18) (Section 3.1) and transfer the OF into D,
accordingly.

3. Construct the OF on a uniform grid in D by barycentric
interpolation.

4. Calculate the moment invariants on the OF; detect the
radial patterns and their poles.

5. For each radial region, evaluate the important vectors.
6. For each radial region, generate the CRZ using either

direct calculation of the machining time or the redundan-
cy threshold (w0) (less accurate but faster).

7. Generate the toolpath for the remaining parts of the para-
metric domain.

8. Generate CC points along the toolpath so that the kinematic
error (εmax) does not exceed the prescribed tolerance h.

9. Map the CC points by inverse transformation onto S.

Output includes a CNC program (G code) that is ready for
milling operations.

6 Numerical and cutting experiments

We test the CRZ against conventional methods, i.e. ZZ, CP,
SRZ, as well as the ISOP [12] - the method that find optimal
feeding angle of the iso-plane that maximizes the total EMRR.
We also compare the CRZ with the HS and the FP paths
obtained by NX11.

Our virtual and the actual milling machine is Haas VF-
2TR. The maximum speed of the linear axes vx, vy, and vz is
275mm/s, and that of the rotary axes va and vb is 33.33°/s. The
kinematic transformation in Eqs. (1) and (2) is applied to post-
process the G code and to evaluate the kinematic error. The
experiments use a ball-endmill with a radius (r) equal to 2mm
and the maximum allowable scallop height (h) between 0.1
and 1.0 mm. The toolpath length (L), machining time (T),
number of partitions (NP), and the number of CC points
(NCC) are used to measure the performance of CRZ relative
to the preceding methods. The maximum allowable kinematic
error (εmax) is equal to h.

Real cutting was performed, and the quality of the surfaces
was compared by their roughness following the conventional
standard ISO 4287-1997 [70], using a Taylor Hobson Talysurf
120 stylus machine (Fig. 17) operated by National Institute of
Metrology (Thailand) (NIMT). Additionally, the accuracy of the
surfaces was compared by the kinematic error per forward step
(see the Appendix).

6.1 Example 1: cone

A cone and the corresponding OF are given in Fig. 6a
and b, respectively. Figure 18 shows sample toolpaths
obtained by the preceding methods (Fig. 18b–e) and
the proposed algorithm (Fig. 18f–h). In Fig. 18g, the
CRZ layers are visualized by using a large allowable
scallop height. It is our experience that undesirable
tool marks and scallops at the boundary between the
layers can be eliminated if the layers slightly overlay
(Fig. 18h). Table 2 shows that the SRZ has the longest
path due to the large redundant area around the peak.
L is the length of the toolpath, NCC is the number of
CC points, T is the machining time with the maximum
feed rate, and A is the advantage of the proposed CRZ
toolpath.

The CRZ toolpath is shorter than the SRZ; however,
it is still the second largest path relative to the compet-
ing methods. Nevertheless, the CRZ is the fastest. The
advantage of the CRZ is calculated by

A ¼ T conventional−TCRZ

T conventional
100%: ð34Þ

The machining time decrease is about 77%, relative
to the HS and FP paths of NX11. The reduction of the
machining time is due to a reduction of the angular
variations when the tool follows the VFPD (Tables 2,
3, and 4).

Figure 19 shows the corresponding CRZ partitions of
the circular region into layers, providing the optimal

Fig. 17 Taylor Hobson Talysurf (120) stylus machine, NIMT
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machining time for h = 0.1. The first partition (R*
1 ¼ 0:92)

reduces the machining time significantly from 214 to 78s.
The second partition decreases the time by 2.5s. The third
partition does not reduce the time and, therefore, is
discarded. The remaining part of the surface is cut by a
convent ional radial path. A two-point par t i t ion
(R*

1 ¼ 0:92 and R*
2 ¼ 0:039) reduces the machining time

by 2.8 times (the radius has been normalized to [0,1]).
Similar partitions for h = 0.5 and h = 1.0 presented in
Table 2 show that the CRZ toolpath outperforms the
preceding methods in terms of the machining time for
every h. Although the number of required CC points for

the CRZ is usually larger than for the CP, this does not
affect the machining time. The best result is a 77.6%
time reduction with regard to the FP for h = 0.1. The
worst is a 20% advantage over the zigzag toolpath for h
= 1.0.

6.2 Example 2: saddle surface

The test surface is given by z ¼ xy x2−y2
x2þy2 ;−30≤x; y≤30

(Fig. 6c). The surface has been converted to the STL
format by Matlab libraries [71]. A five-axis toolpath

(a) (b) (c) 

(d) (e) (f)

(g) (h) 

Fig. 18 Toolpath on a cone. CRZ versus the precedingmethods. a Flattened cone. b FP/NX11. cHS/NX11. d SRZ path. e ISOP path. fCRZ path. gCRZ
layers, virtual cutting. h Overlaid CRZ layers
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Table 3 Testing the proposed method on a saddle surface (example 2)

Example 2: saddle surface h = 0.1 mm h = 0.5 mm h = 1.0 mm

L (mm) NCC T (s) A (%) L (mm) NCC T (s) A (%) L (mm) NCC T (s) A (%)

NX11

HS 6099.4 10128 1002.5 58.7 3949.4 5476 640.0 48.0 3838.0 4969 590.5 50.0

FP 7939.8 8197 1131.2 63.4 3446.0 4671 575.0 42.1 2915.4 3965 482.7 38.8

Iso-parametric

ZZ 5347.9 4774 770.2 46.2 2889.8 916 388.5 14.3 2185.8 495 281.7 − 4.7
CP 6980.2 6123 964.6 57.1 3236.6 1634 602.9 44.8 2810.5 1082 572.1 48.41

SRZ 10383 10441 1367.0 66.4 4488.8 2687 876.5 62.0 3102.8 1678 598.4 50.68

ISOP 4350.6 3794 1023.4 59.5 3351.2 1127 409.7 18.7 2164 775 256.7 − 14.9
CRZ 5481.3 5066 458.02 NP = 3 2587.7 1389 332.8 NP = 2 1994.6 988 295.1 NP = 2

The notations are given in Table 2 and in the text

Table 4 Testing the proposed method on a crown surface (example 3)

Example 3: crown surface h = 0.1 mm h = 0.5 mm h = 1.0 mm

L (mm) NCC T (s) A (%) L (mm) NCC T (s) A (%) L (mm) NCC T (s) A (%)

NX11

HS 4683.1 3576 501.4 74.7 2279 1908 270 56.2 2209 1758 259 58.6

FP 4658.7 4149 541.1 76.6 2253.0 1955 260.3 54.6 2196 1952 260 58.8

Iso-parametric

ZZ 5213.9 2421 316.1 59.9 1959 686 129 8.5 1458 505 92 − 16.3
CP 3971.2 1933 428.9 70.4 2277 541 240 50.8 2188 452 219 51.1

SRZ 6373.2 5708 152.3 16.9 2819 1568 127 7.0 1874 908 107 0

ISOP 3685.5 2470 213.6 40.7 2700 1062 165 28.4 1907 805 118 9.3

CRZ 5517.3 2275 126.5 NP = 1 2683 1010 118 NP = 1 1874 908 107 NP = 0

The notations are given in Table 2 and in the text

Table 2 Testing the proposed method on a conical surface (example 1)

Example 1: conical surface h = 0.1 mm h = 0.5 mm h = 1.0 mm

L (mm) NCC T (s) A (%) L (mm) NCC T (s) A (%) L (mm) NCC T (s) A (%)

NX11
HS 2505.5 1924 317.6 76.2 1243.0 952 172.2 77.0 1224 926 172.0 77.7
FP 2457.5 1921 336.9 77.6 1284.5 931 162.0 75.6 1128.7 804 140.4 72.7

Iso-parametric
ZZ 2368.1 1120 173.6 56.5 1005.9 435 73.0 45.8 669.1 402 48.3 20.9
CP 2073.4 795 259.6 70.9 1107.1 406 122.5 67.7 752.4 406 90.2 57.6
SRZ 4151.9 3787 226.29 66.6 1696.4 1040 95.7 58.7 1386.0 1040 80.2 52.3

ISOP 2798.7 2286 179.9 58.0 968.8 1045 69.1 42.8 760 801 53.7 28.8
CRZ 3217.3 2274 75.4 NP = 2 1517.7 1132 39.5 NP = 1 1238.7 790 38.2 NP = 1

L is the length of the toolpath,NCC is the number ofCC points, T is the machining time with the maximum feed rate,NP is the number of partitions, and A
is the advantage of the proposed CRZ toolpath. The italic font indicates the best value.
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cannot be generated by NX11 from the STL format.
Therefore, we convert the STL to a solid model, using
the fit surface functions of NX11. The average Euclidean
error is 0.05 mm, which ensures the accuracy of the ap-
proximated surface. The HS and FP toolpaths are generat-
ed from the solid model. The STL surface and its OF are
shown in Fig. 6c and d, respectively. The flattened STL is
shown in Fig. 20a. Figure 20b–e show the CRZ partition
graphs of the saddle surface. The first partition (usually
the most significant) reduces the machining time by 60%
(1367 s to 552 s), whereas the second partition reduces
the machining time by 20% (149 s to 119 s). The third
partition only slightly improves the machining time (61.5 s
to 59.7 s). The iterations stop at the fourth partition
which actua l ly increases the t ime (Fig . 20e) .
Therefore, the optimal CRZ decomposition is given by
R*
1 ¼ 0:77; R*

2 ¼ 0:08; and R*
3 ¼ 0:13. Since the third parti-

tion does not substantially improve the machining time,
the first two partitions are selected. The CRZ toolpath is
shown in Fig. 20j. The toolpaths produced by the con-
ventional methods are shown in Fig. 20f–i. The toolpath
generated by the optimal ISOP method is shown in Fig.
20i. The results are summarized in Table 3. The best
result for h = 0.1 is a 66% reduction with regard to the
SRZ path, whereas the smallest reduction is 46% with
regard to the ZZ path. Note that for h = 1.0, the ZZ and
ISOP methods outperform CRZ. In this case, the addi-
tional turns combined with the redundancy of the CRZ
slow down the cut, whereas the ZZ and ISOP required a
small number of turns and were characterized by a
small redundancy index. Additionally, ISOP follows
the average direction of the VFPD which reduces the
redundancy. Hence, for h = 1.0, the ISOP method is
approximately 15% faster than the proposed CRZ.
However, note that the CRZ is still 50% faster than
the conventional SRZ even for h = 1.0.

Conversely, for h = 0.1 and 0.5, ISOP and ZZ paths still are
the shortest. However, the CRZ is the best strategy for reducing
themachining time. The sample virtual cuttings by the ISOP path
and the proposed CRZ are shown in Fig. 21a and b, respectively.

6.3 Example 3: dental crown, semi-finish cut

Consider a model of a dental crown for a canine tooth 1:10
(46 mm × 46 mm × 46 mm), represented by the STL format.
The solution is of particular interest since it offers a new ap-
proach to the practical problem of producing crowns
(implants) by five-axis machining. The STL model, flattened
STL, and OF are shown in Fig. 22a–c, respectively.
Figure 22d and e show the partition graphs. The first partition
reduces the machining time by 17% (from 152 to 126 s) while
the second partition fails (Fig. 22e). Figure 22j presents the
resulting CRZ with a one-point partition. The CP, the ZZ, the
SRZ, and the ISOP paths are shown in Fig. 22f–i, respectively.
From Table 4, the ISOP is the shortest with h=0.1; however,
the CRZ outperforms it in terms of the machining time by
40%. For small h, CRZ outperforms other methods as well.
Note that the advantage of CRZ increases as the maximum
allowable scallop height decreases.

Figure 23 shows virtual and real SRZ and CRZ cuts per-
formed with F480 (slow, safe machining). The machining
time of the SRZ is 52 min, whereas the machining time for
CRZ is 40 min.

The roughness of SRZ and CRZ was compared by
the stylus Taylor Hobson Talysurf (120) at NIMT (Fig.
17). The profiles (amplitudes) were measured across the
tool track directions. Twenty samples were randomly
scanned on the SRZ surface. The CRZ surface was
sampled ten times randomly in the area of the first
and the second layers. The average roughness for the
SRZ of about 19.1 μm is better than that of the CRZ
(25.0 μm). The maximum roughness is approximately

(a) (b)

Fig. 19 CRZ partitions. a 1st partition, R*
1 ¼ 0:92. b 2nd partition, R*

2 ¼ 0:039
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Fig. 20 CRZ versus conventional
toolpath strategies. a Flattened
STL surface of Fig. 6c. b 1st
partition, R*

1 ¼ 0:77. c 2nd
partition, R*

2 ¼ 0:08. d 3rd
partition, R*

3 ¼ 0:13. e 4nd
partition, no improvement. f FP/
NX11 path. g ZZ path. h SRZ
path. i ISOP path. j CRZ path
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the same, i.e., 85.0 μm and 91.1 μm, respectively.
However, the above difference is acceptable, given that
the CRZ is faster by 22%. Note that this machining
time differs from the theoretical estimate in Table 4,
where the feed rate was assumed to be maximal.
Finally, the accuracy of the machined surfaces (exam-
ples 3 and 4) was evaluated by means of the kinematic
error induced by non-linear trajectories of the machine
(see the Appendix).

6.4 Example 4: twisted surface, transfinite
interpolation

Consider an STL surface, a flattenedmesh, and theOFEMRR in
Fig. 24a–c, respectively. The CRZ and the competing toolpaths
are generated for h = 0.1, 0.5, and 1.0. The comparison results are
given in Table 5. The CRZ outperforms the conventional
toolpath for every h.

To verify the roughness of the part surface, the real cut was
performed using the CRZ and the CP for h = 0.01. Figure 24d
shows the first partition graph of the CRZ toolpath for h =
0.01. CP and CRZ toolpaths are given in Fig. 24e and f,
respectively. The initial rough cut is shown in Fig. 25a. The
semi-finish CP and the CRZ are shown in Fig. 25b and c,
respectively. The machining time was 40 min and 28 min,
respectively, with a maximum feed rate of 275 mm/s.

The roughness of the surfaces was measured using 20
random samples. The average roughness of the CRZ
surface is 7.10 μm, and the CP surface is 6.29 μm.
The maximum roughness is 36.8 μm and 32.2 μm, re-
spectively. An example of the roughness profile for the
CRZ surface is shown in Fig. 26.

It should be noted that examples 3 and 4 represent a semi-
finish cut. There are still some tool marks on the surfaces due
to discontinuities of the feed rate at the CC points and rear
gouging. In order to remove them, the entire optimization
scheme [12] has to be employed including 15 kinematic con-
straints, rear gouging avoidance, and possibly, a smaller tool.
However, we consider the experiment a success since the

average and the maximum roughness of the surfaces obtained
for the reference methods is in the same range, whereas the
machining time of the CRZ is substantially shorter. As noted
above, the analysis of the kinematic error for examples 3 and 4
is given in the Appendix.

Consider the OF of the STL surface in Fig. 24c. This OF
does not converge to one point or a small region around a pole.
Consequently, the above CRZ can be improved. To better
align the toolpath with the VFPD and enhance the efficiency
of the toolpath, we combine the CRZwith TFI, as presented in
Section 3. The OF has been arranged in clusters, character-
ized by similar directions using a clustering algorithm [67].
The weighted averages of the clusters are called important
vectors. Since the important vectors do not meet at a pole,
the convergence region is detected as shown in Fig. 27a. It
is approximated by a convex hull of the intersection points
and then circumscribed by the closest circle or an ellipse
using a least-square approximation. Recall that a toolpath
generated by the CRZ on a TFI grid is denoted by CRZT.
The CRZ and CRZT one-point partitions R*

1 ¼ 0:84 and

R*
1 ¼ 0:72, respectively, are presented in Fig. 27c. Note that

the convergence region must be included in the redundancy
region. Otherwise, the vectors may not form a star-like con-
figuration. The CRZT for the twisted surface has been gen-
erated with a pole selected as the centroid of the redundancy
region. The tool trajectories of the CRZT are shown in Fig.
27b. Clearly, the CRZT tracks are better aligned with the OF.

Figure 28a and b display the CRZ and CRZT paths, respec-
tively. Since the CRZT more closely follows the EMRR di-
rection, it provides an extra improvement of about 8.3% rela-
tive to the original CRZ (see Table 5). Figure 29a and b show a
virtual cutting by the CRZT. The resulting surfaces are
almost identical; however, the CRZT is smoother and
faster than the CRZ. Moreover, for h = 1 mm, the CRZT
machining time is 22% better than the CRZ. This is a
promising result, which makes it possible to conjecture
that CRZT can solve the problem of the slow machining
time of the CRZ for a large allowable scallop height
(rough and semi-rough cut).

(a) (b) 

Fig. 21 Virtual cutting of a saddle
surface. a ISOP path. b CRZ path
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Fig. 22 Toolpath results for the
canine tooth model. a Dental
crown (canine tooth). b Flattened
surface (a). c EMRR orientation
field. d 1st partition, R*

1 ¼ 0:54. e
2nd partition (no improvement). f
CP path. g ZZ path. h SRZ path. i
ISOP path. j CRZ path
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7 Region around the pole

In many cases, the region around the pole can be milled by a
mini-CP to reduce the redundancy. Specifically, the CP is an
excellent option when the pole area is nearly flat. For instance,
in example 2, we replaced the radial pattern in the last CRZ
layer by a small CP pattern, shown in Fig. 30. The total ma-
chining time for the original CRZ is 458 s, while the CRZ

combined with a CP pattern requires only 414 s. However,
this option is not recommended when the last layer is charac-
terized by a high curvature. For instance, for the surface in
example 3, we also replaced the radial pattern near the pole by
the mini-CP. The machining time of the new toolpath is 259 s,
which is much longer than the 126 s of the original CRZ. Note
that this combination creates a new modification of the CRZ
or CRZT called the CRZT/CP path.

Fig. 23 Virtual and real cutting
for the canine crown, h = 0.1.
a SRZ, virtual cut. b CRZ, virtual
cut. c Semi-finish SRZ (52 min).
d CRZ (40 min). e Workpiece
clamped on the rotary table
(rough cut). fA sample G code on
the Haas VF-2TR controller
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8 Conclusions

A new compact radial zigzag or CRZ toolpath for five-axis
machining has been introduced and validated on STL sur-
faces. The internal radial layers eliminate the redundancy

and improve the machining time. The toolpath in each layer
follows the VFPD while the step over is close to the largest.

For certain surfaces, the CRZ strategy reduces the machin-
ing time by 77%. However, the algorithm is not suitable for
every surface. A large allowable scallop height jeopardizes the

Fig. 24 Twisted STL surface, CP,
and CRZ toolpath. a Twisted
surface. b flattened twisted
surface. c OF of the EMRR. d 1st
partition, R*

1 ¼ 0:71. e CP. f CRZ
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Table 5 Testing the proposed method on a twisted surface (example 4)

Example 4: twisted surface h = 0.1 mm h = 0.5 mm h = 1.0 mm

L (mm) NCC T (s) A (%) L (mm) NCC T (s) A (%) L (mm) NCC T (s) A (%)

Iso-parametric

ZZ 5612 3793 487 52.7 2405 851 184 54.3 1785 550 124 60.4

CP 3997 3221 649 64.5 2647 1130 215.9 61.0 2509 798 93 47.3

SRZ 7181 6336 653 64.7 3052 1642 204 58.8 2064 987 115 57.3

ISOP 4903 4099 357 35.5 2428 1450 104.4 19.5 1871 1039 83.7 41.4

CRZ 5681 2245 251 8.3 2565 1003 86 2.3 1895 805 63 22.2

CRZT 5153 2059 230 NP = 1 2374 865 84 NP = 1 1636 400 49 NP = 1

The notations are given in Table 2 and in the text

(a) (b) (c)

Fig. 25 a Rough cut, CP. b Semi-finish CP (40 min). c Semi-finish CRZ (28 min)

Length (mm)

(edutilp
mA

μm
)

Fig. 26 Random sample of the
amplitude of the CRZ surface
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advantage of the CRZ. Our experiments show that for h = 1
mm, the CRZ is slower than ZZ and ISOP for a relatively flat
(saddle) surface. This situation can be partially improved by
using CRZT; however, the impact and applicability of CRZT
is still an open problem.

Nevertheless, if the curvature of the surface is high
and the required scallop height is relatively low (semi-
finish or finish cut), we conjecture that the CRZ
toolpath always wins in the case of a radial or an ap-
proximately radial pattern. The method is not necessar-
ily applicable to an arbitrary surface. However, a test
proposed in Section 4.2 is an excellent criterion of
applicability.

Real cutting demonstrates that the roughness and the kine-
matic error of the CRZ surfaces are in the same range as that
obtained by the conventional methods, while the machining
time is always shorter (except for the cases mentioned above).

The proposed toolpath strategy is efficient when the part
surface is partitioned into subregions characterized by differ-
ent topologies of the VFPD. These topologies include the
radial patterns around sharp peaks and valleys of complex-
shaped sculptured surfaces, e.g., medical implants. With the
current state of the manufacturing technology, the market de-
mand for such parts is steadily growing. Therefore, the pro-
posed technology is promising. There is no doubt that this
method should be included in the set of so-called standard

Fig. 27 CRZ and CRZT toolpath generation for the twisted surface (example 4). a Convergence region for the twisted surface. b CRZT path, important
vectors, convergence region. c Solid line: CRZ partition, R*

1 ¼ 0:84; dashed line: CRZT partition, R*
1 ¼ 0:72

Int J Adv Manuf Technol

Author's personal copy



EMRR direction

Radial direction

EMRR direction

Radial direction

(a)

(b)

Fig. 28 CRZ and CRZT
(example 4). a CRZ toolpath.
b CRZT toolpath

(a) (b) 

Fig. 29 Virtual cut, CRZT,
twisted surface (example 4).
a CRZT virtual machining (side
view). b CRZT virtual machining
(top view)
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machining patterns, such as the zigzag, iso-planar, and spiral
patterns.

Funding information This research is supported by the Center of
Excellence in Biomedical Engineering, Thammasat University, Thailand.

Appendix. The kinematic error

To compare the accuracy of the proposedmethod, we evaluate
the kinematic errors induced by non-linear trajectories of the
machine for examples 3 and 4. Note that since the surfaces are
approximated by the STL mesh, the testing includes several
sources of error. The kinematic error depends on the accuracy
of the approximation of the desired surface by the STL mesh
(quality of triangulation). Furthermore, the procedure includes
barycentric interpolation, transforming the triangulated sur-
faces into the Cartesian system. This transformation invokes
certain numerical errors. If a CC curve on the real surface is

characterized by a smooth variation of the rotation angles, the
CC curve on the STL surface is piecewise linear. The corre-
sponding normals and rotation angles could change abruptly,
leading to substantial kinematic errors. A certain toolpath may
pass through such singularities and generate large kinematic
errors, whereas a different configuration may eventually avoid
these errors. However, we have included these inaccuracies in
our evaluation.

The toolpaths produced by NX have not been included
since they have been generated from the solid models rather
than from the STL. Although our experiments show that their
kinematic errors are in the same range, the Appendix com-
pares the errors obtained only on the STL meshes.

Furthermore, we exclude the kinematic error at the pole.
Our approach is not to cross the peak (singularity) which in-
evitably leads to large kinematic errors [72, 73]. The trajectory
loops invoked by the singularity can destroy the workpiece or
even cause a global collision. Therefore, when the SRZ and
CRZ reach the singularity point, they turn back, following the
next track (see our demo in the Abstract). The CP cuts around
the singularity as in Section 7. Finally, if the ZZ or ISOP path
runs near the singularity, we withdraw the tool, turn it in the
air, and continue the cut from the other side (plunging [74], see
also Fig. 31). Note that there exist a number of efficient

Fig. 30 CRZ toolpath with the CP pattern around the pole (example 2)
(40 s advantage)

Approach the pole 

Tool  withdrawal 

Approach the pole 

Leave the pole 

Run around the the pole 

(a) (b) (c)

Fig. 31 Practical treatment of the singularity. a ZZ path. b SRZ and CRZ path. c CP path

Table 6 Kinematic error for surfaces in examples 3 and 4

Kinematic error (mm) Dental crown surface
Example 3

Twisted surface
Example 4

εmax ε′ εmax ε′

ZZ 0.192 0.0035 0.192 0.0088

CP 0.190 0.0054 0.161 0.0149

SRZ 0.191 0.0133 0.184 0.0147

ISOP 0.195 0.0049 0.192 0.0070

CRZ 0.187 0.0046 0.119 0.0066
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methods to avoid singularities [75–77]; however, this experi-
ment compares a regular kinematic error that appears when
cutting a relatively smooth surface characterized by the radial
VFPD. Statistically, the singularity is an outlier, which must
be excluded.

Table 6 shows εmax and ε′ obtained by the ZZ, CP, SRZ,
ISOP, and CRZ toolpaths. Each toolpath has a different length.
Therefore, we measure the kinematic error per unit length of
the forward step (0.5 mm). The size of the forward step was
selected so that h ≈ 0.1.

The results show that the maximum and average kinematic
errors by the CRZ are in the same range as the errors produced
by competing methods; however, the machining time is con-
sistently shorter.

The kinematic error is graphically illustrated in Fig. 32a
and b. The CP trajectories substantially deviate from the de-
sired surface (in example 4) due to the large kinematic error,
whereas the CRZ tool trajectories follow the low curvature
and, therefore, are lying on the surface.
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