
Ultrasonics 94 (2019) 438–453
Contents lists available at ScienceDirect

Ultrasonics

journal homepage: www.elsevier .com/ locate/ul t ras
Initialization of active contours for segmentation of breast cancer via
fusion of ultrasound, Doppler, and elasticity images
https://doi.org/10.1016/j.ultras.2017.12.008
0041-624X/� 2017 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: makhanov@siit.tu.ac.th (S.S. Makhanov).
Chadaporn Keatmanee a,c, Utairat Chaumrattanakul b, Kazunori Kotani c, Stanislav S. Makhanov a,⇑
a Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
bDepartment of Radiology, Thammasat University, Pathum Thani, Thailand
c Japan Advanced Institute of Science and Technology, Ishikawa, Japan

a r t i c l e i n f o
Article history:
Received 3 August 2017
Received in revised form 15 December 2017
Accepted 19 December 2017
Available online 24 December 2017

Keywords:
Segmentation
Breast cancer
Active contours
Initialization
Ultrasound
Elastography
Doppler image
a b s t r a c t

Active contours (snakes) are an efficient method for segmentation of ultrasound (US) images of breast
cancer. However, the method produces inaccurate results if the seeds are initialized improperly (far from
the true boundaries and close to the false boundaries). Therefore, we propose a novel initialization
method based on the fusion of a conventional US image with elasticity and Doppler images. The proposed
fusion method (FM) has been tested against four state-of-the-art initialization methods on 90 ultrasound
images from a database collected by the Thammasat University Hospital of Thailand. The ground truth
was hand-drawn by three leading radiologists of the hospital. The reference methods are: center of diver-
gence (CoD), force field segmentation (FFS), Poisson Inverse Gradient Vector Flow (PIG), and quasi-
automated initialization (QAI).
A variety of numerical tests proves the advantages of the FM. For the raw US images, the percentage of

correctly initialized contours is: FM-94.2%, CoD-0%, FFS-0%, PIG-26.7%, QAI-42.2%. The percentage of
correctly segmented tumors is FM-84.4%, CoD-0%, FFS-0%, PIG-16.67%, QAI-22.44%. For reduced field of
view US images, the percentage of correctly initialized contours is: FM-94.2%, CoD-0%, FFS-0%, PIG-
65.6%, QAI-67.8%. The correctly segmented tumors are FM-88.9%, CoD-0%, FFS-0%, PIG-48.9%, QAI-
44.5%. The accuracy, in terms of the average Hausdorff distance, is respectively 2.29 pixels, 33.81,
34.71, 7.7, and 8.4, whereas in terms of the Jaccard index, it is 0.9, 0.18, 0.19, 0.63, and 0.48.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

An annual check for breast cancer includes a mammogram, and
ultrasound examination of the breast. The mammogram is consid-
ered a primary tool for women who display no symptoms of the
disease [1]. However, if the findings are uncertain, a woman may
be called for further tests, which include extra mammographic
views and breast ultrasound. Therefore, in practice, ultrasound is
an additional tool, which is important in cases of dense breasts
(young women).

Along with the conventional US imagery, modern US machines
produce Elastography and Doppler images, which in many cases
improve the quality of the diagnosis [21]. Elastography is used as
an adjunct technique to help in discrimination between benign
and malignant masses, based on their stiffness [84]. Power Doppler
is another non-invasive US modality which supplements conven-
tional US. Doppler images visualize the appearance and morphol-
ogy of blood vessels associated with a mass. The analysis uses
the fact that a benign mass has little or no vascular flow, whereas
a malignancy increases the blood flow in the vicinity of the tumor
[15].

Since the Elastography and Doppler images are usually avail-
able in cases when cancer is suspected, we propose to use them,
along with a conventional US image to improve the quality of auto-
matic segmentation of breast tumors. In particular, we focus on the
fusion of the US, elasticity, and Doppler images in the framework of
active contours (snakes) [43]. Active contours are one of the most
popular segmentation techniques applied to many image process-
ing problems, originating from different applications. The most
successful modifications of the active contours are the gradient
vector flow (GVF) snakes [90], generalized gradient vector flow
snakes (GGVF) [89], multidirectional GGVF snakes [76], Vector
Field Convolution snakes (VFC) [48], and the recent Adaptive Diffu-
sion Flow snakes (ADF) [87].

However, the accuracy and computational time of the above
mentioned models depend on the initial location (seed snakes).
Unfortunately, if the seeds are far from the boundary of the object,
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the snake can attach itself to false boundaries. Modern
US/sharewave machines generate three types of the images
mentioned above. Each of them helps radiologists to localize and
classify a tumor i.e. the tumors characterized by the low intensity
of the gray level in the US image, high stiffness in the elasticity
image, and by an increased vascularity in the Doppler images.
Therefore, we introduce a novel initialization method based on
the fusion of the conventional US, elasticity and Doppler images.
The proposed algorithm combines the images by means of a
distance transform and a low intensity mask to generate a suitable
initial contour and a supplementary balloon force. A video demo of
the algorithm is at https://drive.google.com/file/d/13DWNibnMPc_
P8nKn6TGfvObQD0ngZko2.
2. Related work

Segmentation of breast abnormalities has received considerable
attention in the literature. An extensive review by Noble and Bouk-
erroui [65] mentions that such segmentation can be treated as a
general image processing problem and includes a priori informa-
tion of ultrasound. The segmentation algorithms include numerous
modifications of the conventional thresholding, neural networks
(see a concise survey in [72]), watershed techniques [35], statisti-
cal methods [8,54], active contours (see extended surveys [13,30],
and a large list of references compiled in [68]), level set method
(see recent surveys in [28,29]), and graph-based segmentation
refined by active contours [34]. Excellent results have been
obtained by combining a modified watershed model and all tissue
classification for segmentation of 3D US images [26].

However, among these segmentation techniques, neural net-
works and other AI based methods require feature selection and
training. Initial seeds are required for the watershed and graph-
based methods, as well as for the active contours and the level-
set methods. Finally, an unsupervised Fuzzy C-means method
(FCM) is a good alternative to techniques requiring prior informa-
tion, training, and initial contours (see, a concise review in [23]). In
particular, Feng et al. [23] develops a new modification of the FCM
based on Hausdorff distance and an adaptive selection of the
neighbor region of each pixel for distance measurement and cen-
troid updating. However, the classical disadvantages of the FCM
are still a long computational time and relatively high sensitivity
to the initial guess.

Apart from active contours, the proposed FM is potentially
applicable to all of the above mentioned techniques, in particular
to the watershed, level set initialization, and even to conventional
or adaptive thresholding. We may conjecture that the FCM could
also benefit from the FM since basically, the initial contour pro-
vides additional information about a possible location of the
tumor. However, such combinations are out of the scope of this
paper. Our focus is the initial seeds for the active contours.

Let us review some ideas developed specifically for active con-
tours. One of the most popular techniques is analysis of the vector
field generated by the GVF-type model [90]. For instance, Li et al.
[50] applies FFS to divide the image domain into disjointed regions
representing the capture range of the external force field. The
snakes can be individually initialized within each of the enclosures
and moved to the targeted object boundary within it, avoiding
being attracted by other objects. However, the algorithm trans-
forms an image segmentation problem into a vector field segmen-
tation problem, which is difficult to solve if strong noise is present.

The idea to initialize the snakes at the CoD of the GVF-type vec-
tor field was first mentioned in [83]. Further, Ge and Tan [88]
define the CoD by analyzing relative directions of the vector field
in a sliding 2 � 2 window (a generalization to larger windows is
not available). He et al. [95] uses Phase Portrait Analysis (PPA)
[74] to detect the critical points of the vector field and a rule that
‘‘the initial contours should be set to contain all of the node points
in the object area and none of the others”. Although PPA has been
used in a variety of image processing applications, e.g.
[16,51,52,74,80,93], the standard PPA classifier based on ‘‘if then”
rules often cannot be adapted to the case of snake initializations
characterized by irregular nodes corrupted by noise.

The similarity of the GGVF and the Navier-Stokes equations
makes it possible to use the analogy of a flow through a porous
medium. Consequently, Ray et al. [67] treats the initial snakes as
sources of flow, emitting normal unit vectors into the image
domain. The authors also noticed critical points of the flow and
proposed to merge multi-snakes, initialized around those points
for segmentation of the MRI images of lungs.

A competing idea is placing the seed points uniformly or ran-
domly over the entire image, evolving them from each seed point,
and analyzing the resulting configuration [70]. However, the
required classifier to validate the final configuration must be
trained, which makes the model image-dependent.

A partial solution to the problem is the above mentioned QAI
method by Tauber et al. [78,79]. The method employs the CoDs
combined with a tracing procedure to create a ‘‘skeleton” of the
object, consisting of centers of strong and weak divergence. The
centers of weak divergence are the points where the vectors of
the GVF diverge in one (either horizontal or vertical) direction.
The centers of strong divergence feature both horizontal and verti-
cal divergences. The initial snake is generated around the skeleton.
However, the initialization is not entirely automatic. The algorithm
still requires at least one manually generated point inside the
object. Moreover, in some cases the skeleton can evolve outside
the boundary of the object.

The above mentioned PIG model [49] establishes the relation-
ship between the external force field and the underlying external
energy field via the solution of the corresponding Poisson equation.
The model has been applied to 2D and 3D cases for a variety of
medical images. The isoline of the minimum energy is selected
as the initial contour. However, the model may suffer from incom-
plete isolines, as well as from over segmentation.

An automatic initialization method has been proposed in [32]
for PET images of the liver. The candidate contours are generated
by Canny edge detection and subsequently classified by a genetic
algorithm. The algorithm has been applied to segmentation of face
contours in video files [33]. A similar idea was introduced in [81]
for detection of the synovial boundaries in US images. However,
the initial snakes selected from the edge map are not robust and
may not be applicable to multiple objects.

The idea of trial snakes (TS), combined with PPA, was applied to
US images of breast cancer in [44]. The PPA makes it possible to
detect the centers of convergence and divergence, as well as the
attracting and repelling nodes. The algorithm differentiates
between the internal and external seeds by running multiple TS
from the critical points and checking their intersections with the
boundary of the image. The most serious drawback of TS is that
they require a considerable amount of computational time.

The initialization algorithms for the US images often rely on
gray levels and textures, to place the seed points inside the tumor
[19,41,58]. Saliency and feature maps have been proposed in [71].
Fergani et al. [24] introduces a special vector field to hybridize the
GVF and the texture. A Chan-Vese type model is proposed in [55]. A
few papers related to a specific medical image processing task use
the typical position of a human organ in the US images (see, for
instance, Akgul et al. [3]). However, these models are image depen-
dent and may not work if strong noise is present.

Therefore, this paper proposes a new fast algorithm for auto-
matic initialization, which combines the conventional grayscale
US image with the corresponding elasticity and Doppler images.

https://drive.google.com/file/d/13DWNibnMPc_P8nKn6TGfvObQD0ngZko2
https://drive.google.com/file/d/13DWNibnMPc_P8nKn6TGfvObQD0ngZko2
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The technique makes it possible to locate the initial contour inside
the tumor, close enough to the true boundaries to ensure conver-
gence of the active contour. The paper also introduces a modifica-
tion of the balloon type active contour, based on a combination of the
radial force derived from the fusion image and the GVF-type force.

3. Background

3.1. Ultrasonography for breast cancer screening

The World Health Organization reports that breast cancer is
common in women. The cases of breast cancers in developing
countries are increasing due to the increase in life expectancy,
urbanization, and western lifestyles [86]. The mammogram
remains the primary screening tool for women who display no
symptoms of the disease [1]. However, high-resolution US is
considered one of the most appropriate adjunct tools [73,69] due
to a number of advantages, such as no exposure to radiation,
simplicity, and low cost. Besides, in dense breasts, mammography
has limited sensitivity, whereas US is useful to examine dense
breast tissue. Note that women with dense parenchyma have an
increased risk of breast cancer. Recent studies have shown that
the detection of small cancers with high-resolution US has
increased by 3–4 cancers per 1000 women without clinical or
mammographic abnormalities [59]. Apart from screening, US is
used in daily practice, in order to improve lesion detection and
characterization. Several large studies have shown a possible role
of US for cancer detection and differentiation e.g. [45]. Thus, com-
puter aided diagnosis, including US imaging, is likely to improve
survival rates [62,63].

3.1.1. Elastography
Elastography (Fig. 1(b)) is a US imaging modality to classify

breast masses based on their stiffness [37,91]. A US machine dis-
plays a color elastography image as follows [39]:

Score 1: blue indicates soft and loose structures.
Score 2: a combination of blue and green indicates soft-rigid
structures.
Score 3: red and dark red at the center of the mass, and green at
the periphery, indicate a hard to soft mass.
Score 4: red and dark red indicates a hard and tight mass.
Score 5: red and dark red covering the mass and the surround-
ing tissue refer to a hard expanding mass. Scores 1, 2, and 3 rep-
resent benign features, whereas masses scoring 4 and 5 are
likely to be malignant [4,5,91].

Note that some machines display the stiffness in the reverse
palette, i.e. blue indicates the hardest tissue, whereas red indicates
the soft tissue.
Fig. 1. Malignant mass. (a) Conventional US, Uraw ,
3.1.2. Power Doppler imaging
Power Doppler (Fig. 1(c)) is another non-invasive supplement to

the conventional US. The sound waves bounce off solid objects,
including blood cells. The movement of the blood cells causes a
change in the pitch of the reflected sound waves as a result of
the Doppler effect. Typically, a benign mass has little or no appear-
ance of vascular flow, whereas a malignant mass is often character-
ized by an increased blood flow. The advantages of Power Doppler
are high sensitivity, low angle dependency, and no aliasing [64,92].
Therefore, it is also used as an adjunct image modality for breast
cancer diagnosis [64,38]. When the cells move towards the trans-
ducer, the frequency of returning ultrasound waves is greater than
that of the emitted waves, and the blood flow is depicted in red.
When the cells move away the flow is depicted in blue. The inten-
sity of the color is proportional to the flow velocity [66]. However,
in this paper, we do not analyze the Doppler palette. We only reg-
ister the presence or absence of the Doppler spots.

3.1.3. Combination of the imaging modalities in clinical practice
The efficiency of combinedUS, Doppler, and elasticity imaging in

diagnosing breast malignancy is still controversial. For instance,
Davoudi et al. [18] reports that ‘‘using the Doppler image alone
has little value in differentiating between malignant and benign
breast lesions”. The research conducted by [25] concludes that Dop-
pler imaging does not contribute to categorization of solid breast
masses. However, there is growing evidence that analysis of a com-
bination of images improves the characterization of breast lesions.
Thomas et al. [79] reports that sensitivity/specificity was 96%/68%
for US, 100%/40% for US and mammography, and 96%/80% for the
combined mode, including Doppler. Cho et al. [15] characterizes
the results obtained from 5 readers by the area under the receiver
operated characteristic curve Az as follows: ‘‘the Az of the US mode,
elastography, and Doppler US (average, 0.844; range, 0.797–0.876)
was greater than that of the US mode alone (average, 0.771; range,
0.738–0.798) for all readers”. Li et al. [53] reports ‘‘the specificity
ofmaking the decision for biopsy increased from6.5% to 38.7%when
USwas combinedwith color Doppler and elasticitywithout a statis-
tically significant change in sensitivity”. Elkharbotly and Farouk [22]
shows that a combined use of US, elasticity, and color Doppler
achieved an NPV of 95% ‘‘thus allowing sparing of unnecessary inva-
sive diagnostic procedures”. In summary, there is enough evidence
that a combination of the conventional US, elastography, and Dop-
pler images improves the accuracyof diagnosis. Therefore, the above
imagingmodalitieswill be increasingly used in clinical conditions to
allow for computerized segmentation and classification of tumors.

3.2. Combination of the imaging modalities for classification

Combinations of the different US modalities have been used in
several classification algorithms. For instance, the conventional
(b) elastography, Eraw (c) Doppler image, Draw .
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US and Elastography are used by [7,96], whereas a combination of
US and Doppler images is used by [36,31,12,47]. However, the idea
of using the three modalities for initialization, and evolving the
active contours, seems to be overlooked.

3.3. Active contour model

An active contour (snake) is a parametric curve
vðsÞ ¼ ðxðsÞ; yðsÞÞ which grows or contracts inside an image to
attach itself to the boundary of the desired object. The evolution
of the snake is simulated by Euler equations for the energy func-
tional, given by

E ¼
Z 1

0

1
2
ða � jv sðsÞj2 þ b � jv ssðsÞj2Þ þ EextðvðsÞÞ

� �
ds; ð1Þ

where the subscripts denote partial derivatives, a and b are weight-
ing parameters to control the snake’s tension and rigidity, and
EextðvðsÞÞ is the external force. The most successful modifications
of the active contours are Gradient Vector Flow (GVF) snakes [90],
Generalized Gradient Vector Flow (GGVF) snakes [89], multidirec-
tional GGVF snakes [76], and the non-linear diffusion model [85].
Recent GVF-type models are Normal Gradient Vector Flow [40],
Infinity Laplacian [27], Harmonic Gradient Vector Flow [82], Convo-
lution Vector Flow [48], Dynamic Directional Gradient Vector Flow
[14], Adaptive Diffusion Flow [87], and Multi Feature Gradient Vec-
tor Flow [68].

4. Method

This section presents a new initialization method, based on the
fusion of the US, elasticity, and Doppler images.

4.1. Preprocessing

The proposed algorithm preprocesses the three types of images
introduced above as follows: US image (Fig. 1(a)):

Umask ¼ BinarizeðGaussianðUrawÞÞ: ð2Þ
After Gaussian smoothing, the US image is binarized, creating a

low intensity mask (see Fig. 2(b)). Alternatively, one can generate
the low intensity mask by (Fig. 2(c)):

Umask ¼ RegionGrowingððBinarizeðUrawÞÞÞ: ð3Þ
The mask applies to an image I as follows:

MaskðIi;jÞ ¼
Ii;j; if Umask;i;j ¼ 1;
0; otherwise:

�
ð4Þ

The edge map is generated using Fuzzy C-means clustering [6]
(see Fig. 2(a)).
Fig. 2. (a) Edge map (U-image), (b) Umask (
Uedge ¼ EdgeMapðUrawÞ: ð5Þ
The red channel of the elasticity image is binarized (Fig. 3(a)).

The resulting output image (Fig. 3(b)) is obtained by applying the
low intensity mask (see Figs. 1(b) and 2(b)):

E ¼MaskðBinarizeðRedðErawÞÞ: ð6Þ
The areas characterized by an increased blood flow are repre-

sented by colored spots superimposed on Uraw. The Doppler Image
(Fig. 1(c)) is converted into grayscale and binarized, using an auto-
matic threshold (see Fig. 4(a)). The low intensity mask is then
applied to the resulting image (see Fig. 4(b)):

D ¼MaskðBinarizeðGrayScaleðDrawÞÞÞ: ð7Þ
Elimination of outliers is performed by following [10,11] using

the Mahalanobis distance [60] and 97.5%-quantile of the Chi-
square distribution (Fig. 4(c)).

4.2. Distance transform. Soft intersection

The distance transform is defined with regard to a prescribed
set of points S as follows:

dSðPÞ ¼min
S
kP � Sk; ð8Þ

where k k denotes the Euclidean distance and P is an arbitrary point.
In image processing, the set S usually is an object (and possibly
noise), and P is a point in the binarized image. Consider a normal-
ized dSðPÞ, so that maxdSðPÞ ¼ 1. In the forthcoming figures, dSðPÞ
is represented by a grayscale image, which indicates how far a par-
ticular point P is from set S. Clearly, dSðSÞ ¼ 0. An introductory
example is shown in Fig. 5.

Define the fusion image by a soft intersection of dU ; dE, and dD:

dFðPÞ ¼ wUdUðPÞ þwEdEðPÞ þwDdDðPÞ; ð9Þ
where dUðPÞ;dEðPÞ, and dDðPÞ are the distance transforms, corre-
sponding to Uedge; E, and D, respectively, and wU ;wE;wD are the
weighting coefficients: wU þwE þwD ¼ 1 (Fig. 6(a)-(d)). In practice
we use a simple averagewU ¼ wE ¼ wD ¼ 1

3. The contribution of each
image to the fusion image is illustrated in Fig. 7. As a variant, dU ;dE,
and dD can be regarded as the RGB colors, and dFðPÞ as a function to
convert RGB image to grayscale. Using this analogy, dFðPÞ can also
be defined similarly to the lightness conversion method [42]:

dFðPÞ ¼ ðmaxðdUðPÞ;dEðPÞ; dDðPÞÞ
þminðdUðPÞ;dEðPÞ; dDðPÞÞÞ=2: ð10Þ

The numerical experiments show that the above fusion formu-
las (9) and (10) produce very close results. Our forthcoming section
‘‘Results and discussion” illustrates the proposed FM applied with
the soft intersection (9). Fig. 8 demonstrates the advantages of
Gaussian), (d) Umask(Region Growing).



Fig. 5. Example of the distance transform (a) binarized image, (b) distance transform.

Fig. 3. (a) Binarized elasticity image, (b) E-image.

Fig. 4. (a) Binarize(GrayScale(Draw)), (b) D = Mask(Binarize(Gaussian(Draw))), (c) D-image, outliers eliminated.
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the soft intersection for the image in Fig. 1 with reference to the
binary intersection. Clearly, the soft intersection in Fig. 8(f) pro-
duces an appropriate grayscale image, which can subsequently
be used to initialize an active contour, whereas the binary intersec-
tions in Fig. 8(d) and (e) are not suitable for initialization.
4.3. Automatic initialization

Consider a sequence of thresholds T ¼ T1; T2; . . . TN , obtained by
an iterative binarization applied to dF . We apply the Otsu algo-
rithm, employing multiple automatically evaluated thresholds



Fig. 6. Distance transforms for the images in Fig. 1: (a) dU , (b) dE , (c), dD , (d) soft intersection dF .
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[94]. Another option is a quantized version of the fusion image,
thresholded at N equally spaced levels (Fig. 9):

T ¼ maxðdFÞ
N

;
2maxðdFÞ

N
; . . . ;

ðN � 1ÞmaxdF

N

� �
: ð11Þ

Consider a fusion image dFðTÞ, binarized at the level T. Denote
the corresponding edge map by EFðTÞ and a set of all continuous
contours from EFðTÞ by CFðTÞ. Our basic idea is that the best
threshold is the one that generates the closest contour CFðTÞ to
the convex hull of the Doppler points in the D-image (Fig. 10).
Additionally, the contour is verified by a decision tree generated
by the CART algorithm [9].

A pseudo-code of the algorithm is given below:

input: Uraw; Eraw;Draw

U; E;D  preprocess the input images using (5)–(7),
respectively

dF  distance transform (9)
T  sequence of thresholds (11)
Bo;All  NULL
BD  convex hull of D
cbd  centroid of BD

for each Tk in T
dF;k  threshold dF
EF;k  edgemap of dF;k
CF;k  all continuous contours of EF;k (see Remark 1)
Bo  contour CF;k closest to BD in terms of the Hausdorff
distance dist1
YesNo evaluate the resulting contour Bo by CART
algorithm (decision tree)
if YesNo Bo;All  Bo;All þ Bo

if Bo;All = NULL
break

else
Binit  contour BAll;o closest to BD, in terms of dist1

co  centroid of Binit

Binit  contour Binit scaled by factor c, with co being the origin
return Binit

Remark 1. The procedure to trace the contours is similar to the
routine findContours of openCV [46].

We construct the decision tree (DT) using 30 additional US
images submitted to the MatLab function fitctree [61]. The func-
tion is designed to implement a conventional CART DT
[9,17,56,57] using the Gini index. The DT is based on the following
features:

Average gradient of the gray level along Bo relative to the max
gradient: IðTÞ.

Ratio of intersection Bo and BD relative to the BD : ABo ;BD = Area
(Bo \ BDÞ/Area(BD).

Distance between co and cbd : dco ;cbd .
Boolean variable L ¼ BD 2 Bo.



Fig. 7. Generation of the fusion image.
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The resulting impurity measures are:
IGini¼0:0223;ABO ;BD ;Gini¼ 0:0199;dco ;cbd ;Gini¼ 0:0239;LGini¼0:0221.
The above measures clearly indicate that the resulting DT is a

good quality classifier. The corresponding DT and the thresholds
are shown in Fig. 11. Note that in order to ensure that Binit is inside
Fig. 8. Soft (top) and hard (bottom) (binary) intersection: (a) Uedge , (b) E, (c) D, (d) hard in

Fig. 9. (a) Quantized dF -image (b)
the tumor, Bo is scaled by factor c. In principle, c can be taken suf-
ficiently small so that the snake evolves from the centroid. The FM-
balloon force (see the next section) delivers the snake to the
boundary, even from a single point. However, in order to improve
the computational time, in practice, we use c ¼ 0:4.

4.4. Fusion radial force

Recall that the conventional active contour is represented by Eq.
(1) [43]. Our proposed external force EextðvðsÞÞ is:
EextðvðsÞÞ ¼ E1

extðvðsÞÞ þ E2
extðx; yÞÞ; ð12Þ

where E1
extðvðsÞÞ is the traditional gradient based force, and E2

extðx; yÞÞ
is the balloon- type fusion radial force (FRF). The FRF is proportional
to the distance between ðx; yÞ and Bo so that E2

extðx; yÞÞ ¼ 0 if

ðx; yÞ 2 Bo and E2
extðx; yÞÞ ¼ E2

max if ðx; yÞ ¼ c0, where E2
max is evaluated

experimentally (see Fig. 12).

5. Performance measures

In order to compare the fusion method with the conventional
algorithms, we introduce the following performance measures.

5.1. Contour based accuracy measures

The Hausdorff distance given by

distH1 ðX;YÞ ¼max max
a2X

min
b2Y
ka� bk;max

b2Y
min
a2X
ka� bk

� �
ð13Þ
tersection of Uedge; E, and D, (e) hard intersection of E, and D, (f) soft intersection dF .

the corresponding contours.



Fig. 10. (a) D-image (b) convex hull BD overlaid with Uraw (c) contours CF1 ðT1Þ;CF2 ðT1Þ are obtained for T ¼ T1;CF1 ðT2Þ, and CF1 ðT3Þ obtained for T ¼ T2, and T ¼ T3 (d) Bo1 ;Bo2

and Bo3 are the closest to BD (e) Bo;2 passes the decision tree (f) Binit ¼ cBo;2.
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where k k denotes the Euclidean distance, X the ground truth con-
tour, and Y the snake contour.

The averaged Hausdorff distance is defined by

distH2 ðX;YÞ ¼max
P

a2Xminb2Yka� bk
LX

;

P
b2Ymina2Xka� bk

LY

� �
;

ð14Þ
where LX ; LY is the length of the true contour, and the resulting con-
tour, respectively.

The relative Hausdorff distance is given by

distH3 ðX;YÞ ¼
distH1 ðX;YÞ

LX
n; ð15Þ

where n ¼ 1000 is the normalizing coefficient. The distance evalu-
ates the relative importance of the difference between the two
curves. For instance, if distH1 ðX;YÞ ¼ 10, and LX ¼ 100 pixels, the
error is unacceptable, however, if for instance, LX ¼ 10;000, then
distH3 ðX;YÞ is appropriate. The importance of the Hausdorff distance
in comparing planar curves is parametrization invariance. Although
distH1 is not a distance in a rigorous mathematical sense (it does not
satisfy the triangle inequality), Dubuisson and Jain [20] shows that
it is the best for matching curved objects.

The contour-based true positive rate is:

TPc ¼ TPY

NY
; ð16Þ

where TPY is the number of true positive pixels, and NY is the total
number of pixels belonging to the resulting active contour (in prac-
tice we consider LX ¼ NX and LY ¼ NY ).

5.2. Region based accuracy measures

The most used metric in validating medical segmentations [75]
is the Dice coefficient given by



Fig. 11. Decision tree created by CART.

Fig. 12. Fusion snake: the conventional gradient force E1
ext-blue, the proposed fusion

radial force E2
ext-white. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

446 C. Keatmanee et al. / Ultrasonics 94 (2019) 438–453
DICE ¼ 2TP
2TP þ FP þ FN

; ð17Þ

where TP; FP, and FN are the region-based true positive, false posi-
tive, and false negative. We also use the Jaccard index given by

JAC ¼ TP
TP þ FP þ FN

; ð18Þ

and the sensitivity given by

SEN ¼ TP
TP þ FN

: ð19Þ

Finally, we employ a region based averaged Hausdorff distance,
given by

distHR ðRX ;RY Þ ¼max

P
a2RXminb2RY ka�bk

ARX

;

P
b2RYmina2RXka�bk

ARY

� �
;

ð20Þ
where RX and RY are the regions corresponding to the contours X
and Y, respectively. ARX and ARY are the areas of RX and RY ,
respectively.

5.3. Performance of the initialization procedure

The performance of the initialization is evaluated for the entire
series of images by Ncorr , defined as the percentage of images for
which the internal and external seeds were correctly differenti-
ated, Scorr , the percentage of images for which the contour was cor-
rectly segmented (the final snake is considered correct if
distH2 ðX;YÞ 6 3), and the computational time Tcomp.

As noted above, the segmentation accuracy depends, not only
on initialization, but on the segmentation model as well. For
instance, the level set method, clustering, watershed segmentation,
region growing, and edgeless active contours may benefit from the
proposed FM. However, this is out of the scope of this paper. At
present, the model is focused on the parametric active contours.
6. Results and discussion

6.1. Experimental dataset

The algorithm has been tested on 90 US images of breast cancer
from 90 different patients obtained by a Philips iU22 ultrasound
machine at the Thammasat University Hospital. The resolution
ranges from 200 � 200 to 300 � 400 pixels. The ground truth con-
tours have been drawn by three leading experts with the Depart-
ment of Radiology of Thammasat University using an electronic
pen and Samsung Galaxy Tablet computer. The final ground truth
was obtained by the majority voting rule (two out of three).

6.2. Numerical experiments and discussion

The FM has been tested against four state-of-the-art initializa-
tion models, namely, center of divergence (CoD) [88], force field
segmentation (FFS) [50], Poisson inverse gradient (PIG) [49], and
quasi automatic initialization (QAI) [77,78], using the performance
measures Eqs. (13)–(20). In order to prove the efficiency of the FRF,
we compare it with the Vector Field Convolution (VFC) snake [48]
and the recent Adaptive Diffusion Flow (ADF) [87] methods, which
have been proven to be superior to GVF [90], Normal Gradient Vec-
tor Flow [40], Infinity Laplacian GVF [27], and Harmonic Gradient
Vector Flow [82]. Fig. 13 is an example, comparing the initializa-
tion and the resulting snake produced by the FM/FRF with CoD/
VFC, FFS/VFC,PIG/VFC, and QAI/VFC. Fig. 13(a) and (b) shows a US
image with a ‘‘false” tumor on the right side of the image and a
shadow at the lower left corner, characterized by grayscale compa-
rable with the gray level of a true tumor. The resulting edge map in
Fig. 13(c) shows multiple irregular contours. Clearly, if a contract-
ing snake is initialized at the boundary of the image, it will attach
itself to a wrong object and produce a totally inappropriate con-
tour. Therefore, this US image requires a high quality initial snake,
preferably expanding from the inside of the true contour. The CoD
and FFS produce multiple seeds at the CoDs (Fig. 13(e) and (f)).
However, due to noise, the corresponding multiple snakes are
unable to merge (Fig. 13(j) and (k)). In turn, the PIG misses the true
tumor and generates the initial contour inside a false object (Fig. 13
(g)). Therefore, the resulting snake is inappropriate (Fig. 13(l)).
Finally, QAI requires one user-defined point inside the actual
object. Due to this, QAI generates the initial contour around a cor-
rect location of the tumor. Since QAI is based on a ‘‘skeleton” of the
object, which connects the CoDs, the method wrongly includes a
CoD located outside the object (Fig. 13(h)). Consequently, the
expanding snake grows outside the tumor and partially attaches



Fig. 13. (a) US image, (b) ground truth, (c) Uedge , (d) FM-initialization, (e) CoD initialization, (f) FFS-initialization, (g) PIG-initialization (h) QAI-initialization. Segmentation
results: (i) FM/FRF (j), CoD/VFC, (k) FFS/VFC, (l)-PIG/VFC, (m) QAI/VFC.
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to a false boundary (Fig. 13(m)). The FM initialization method out-
performs the above techniques because it has more information
about the location of the tumor. Although the low intensity mask
in Fig. 2(b) cannot localize the tumor, the combination of the Dop-
pler and elasticity images excludes the artifact (false tumor),
unwanted shadows, and produces an appropriate initial contour
Binit . Finally, the proposed DT verifies the candidate contour using
supplementary features.
Table 2
FM vs. reference methods. Contour based measures.

Model Contour

H1 H2

l r r=l l r r=

FM 7.54 3.40 0.45 2.40 0.95 0.3
COD 176.31 27.98 0.16 321.60 121.00 0.3
FFS 171.80 31.51 0.18 294.17 182.47 0.6
PIG 77.48 39.01 0.50 58.50 39.52 0.6
QAI 71.40 31.18 0.44 82.23 132.10 1.6

Table 1
Efficiency of initialization. FM vs. reference methods.

Model In

Comp. time Tcom , sec

l r r=l

FM 11.39 2.07 0.18
CoD 17.72 14.07 0.79
FFS 19.53 9.65 0.49
PIG 9.17 1.58 0.17
QAI 145.23 14.89 0.10
Tables 1–3 illustrate numerical tests of the proposed method vs.
the above mentioned techniques, using the initialization and accu-
racy measures (13)–(20) introduced in Section 5. For every mea-
sure, we calculate the mean l and the standard deviation r. For
all evaluation measures related to FM r=l < 1. It indicates a low
spread of the error.

Table 1 demonstrates the advantages of the proposed initializa-
tion method (Ncorr ¼ 92:2; Scorr ¼ 84:4). The CoD and FFS failed
based measures

H3 TPC

l l r r=l l r r=l

9 8.27 3.43 0.41 80.73 9.32 0.11
8 299.16 108.72 0.36 9.30 6.30 0.68
2 239.57 81.24 0.34 6.69 4.70 0.70
7 127.76 89.84 0.70 16.58 12.54 0.76
1 142.99 187.69 1.31 25.66 34.56 1.35

itialization measures

Correctly nitialized Ncorr , % Correctly segmented Scorr , %

92.22 84.44
0.00 0.00
0.00 0.00
26.67 16.67
42.22 22.44



Table 3
FM vs. reference methods. Region based measures.

Model Region based measures

Jaccard Dice SEN HR

l r r=l l r r=l l r r=l l r r=l

FM 0.89 0.07 0.78 0.90 0.08 0.88 89.99 4.20 0.05 0.24 0.14 0.58
COD 0.17 0.09 0.59 0.28 0.14 0.50 31.76 21.58 0.68 74.16 28.94 0.39
FFS 0.16 0.12 0.75 0.27 0.17 0.63 36.68 29.03 0.79 62.57 34.51 0.55
PIG 0.1 0.24 2.40 0.15 0.29 1.93 12.28 24.72 2.01 42.35 11.50 0.27
QAI 0.34 0.36 1.06 0.38 0.41 1.08 38.27 34.56 0.90 44.41 38.32 0.86
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(Ncorr ¼ Scorr ¼ 0), whereas PIG and QAI yield a lower performance
(Ncorr ¼ 26:7;42:2; Scorr ¼ 16:7;22:4, respectively). All tested meth-
ods have been implemented on the MatLab platform, using a
AMD PRO A8-8600B R6 CPU, 1.6 GHz, with 8 GB RAM and 64-bit
OS. The FM is the second best by the average speed (11.4 s), but
significantly better in all other categories, including correctly ini-
tialized and correctly segmented images. Tables 2 and 3 show
the performance of FM/FRF, CoD/VFC, FFS/VFC, PIG/VFC, and QAI/
VFC. The results produced by the reference methods are character-
ized by low accuracy. For instance, in terms of distH2 , the average
Fig. 14. Force field: (a) FRF, (b) VFC, (c) ADF; snake evolution: (d) FRF
accuracy of the FM is 2.4 pixels, whereas for CoD, FFS, PIG, and
QAI it is 321.6, 486.57, 58.5, and 82.23, respectively.

6.3. Impact of the radial force

The next important question is the impact of the FRF. Fig. 14
compares segmentation produced by the proposed FRF with that
produced by VFC and ADF. Note that the initial contour is obtained
by FM. Tables 4–6 clearly demonstrate that the FM-based initial-
ization improves ADF and VFC. For instance, FM/VFC segments
, (e) VFC, (f) ADF; segmentation results: (g) FRF, (h) VFC, (i) ADF.



Table 4
Impact of the radial force.

Model Segmentation measures

Comp. Time Tcom , sec Correctly segmented Scorr , %

l r r=l

FM 0.09 0.03 0.33 84.44
VFC 0.08 0.03 0.37 56.62
ADF 0.11 0.08 0.73 43.30

Table 5
Impact of the radial force. Contour based measures.

Model Contour based measures

H1 H2 H3 TPC

l r r=l l r r=l l r r=l l r r=l

FM 7.54 3.40 0.45 2.40 0.95 0.39 8.27 3.43 0.41 80.73 9.32 0.11
VFC 20.09 18.53 0.92 6.98 9.58 1.37 13.61 10.89 0.80 62.05 28.51 0.46
ADF 24.69 20.06 0.81 7.20 9.65 1.34 14.16 10.40 0.73 61.26 25.61 0.42

Table 6
Impact of the radial force. Region based measures.

Model Region based measures

Jaccard Dice SEN HR

l r r=l l r r=l l r r=l l r r=l

FM 0.89 0.07 0.78 0.90 0.08 0.88 89.99 4.20 0.05 0.24 0.14 0.58
VFC 55.87 28.92 0.52 66.02 29.17 0.44 65.71 23.71 0.36 4.80 4.97 1.03
ADF 53.54 22.75 0.42 66.82 22.51 0.34 62.92 20.09 0.32 5.04 4.46 0.88
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56% of the images, whereas the best initialization using QAI/VFC
detects only about 22%. However, the performance is still substan-
tially lower than the 84% produced by FM/FRF. The accuracy of VFC
has been improved (see a decrease of H2 from 39 pixels (PIG/VFC)
to 9.58 (FM/VFC) in Table 5). However, the proposed FM/FRF shows
H2 ¼ 2:4 and the smallest standard deviation of about 0.95. As a
matter of fact, for the contour based measures, FM has the smallest
ratio of r=l in all categories.
Fig. 15. Minimum bounding rectangle and the RFOV.
6.4. Reduced field of view

In clinical practice, the radiologist often defines a reduced field
of view (RFOV), which can be used by a computerized segmenta-
tion procedure (see Fig. 15). Since a part of our image set does
not have an RFOV, we analyzed 30 images with an RFOV defined
by a radiologist. The ratio of the area of the tumor’s minimum
bounding rectangle (MBR) and the RFOV was approximately 1/2.
Therefore for the remaining images we generated an RFOV auto-
matically by increasing the sides of the MBR by

ffiffiffi
2
p

. Fig. 16 displays
the results obtained by FM/FRF, CoD/VFC, FFS/VFC, PIG/VFC, and
QAI/VFC for a sample RFOV-image. Furthermore, Tables 7–9 com-
pare the numerical results obtained with the RFOV. Clearly, the
RFOV improved the performance of PIG and QAI to 48 and 44%
respectively. However, FM also improved to 89%. Let us also com-
pare the improvement in the accuracy taking H2 as the reference:
FM from 2.4 to 2.29, PIG from 58 to 7.7, and QAI from 82 to 8.4.
Hence, RFOV has a great impact on the two reference methods,
improving their accuracy by 8–10 times. However, FM still remains
the best method in all categories.
6.5. Relative impact of different modalities

An important question is whether the FM/FRF requires all three
image modalities, and which modality is the most important.
Tables 10–12 show the accuracy of the proposed method applied
to combinations (U; E), (U;D), etc. Clearly, combining the three
types of images produces the best accuracy. Interestingly enough,
(E;D) is the second best in accuracy (Scorr ¼ 73:3%). However, the
segmentation procedure uses a mask produced by the US image.
Since this combination implicitly uses the U-image, it is incorrect
to say that the algorithm is based solely on (E;D). This complies



Fig. 16. Segmentation on the RFOV, (a) US image, (b) ground truth (c), Uedge , (d) FM-initialization, (e) CoD initialization, (f) FFS-initialization, (g) PIG-initialization (h) QAI-
initialization. Segmentation results: (i) FM/FRF (j), CoD/VFC, (k) FFS/VFC, (l)-PIG/VFC, (m) QAI/VFC.

Table 7
Initialization for RFOV images.

Model Initialization measures

Comp. Time Tcom , sec Correctly initialized Ncorr , % Correctly segmented Scorr , %

l r r=l

FM 6.58 1.75 0.26 96.67 88.89
CoD 1.54 1.37 0.89 0.00 0.00
FFS 1.62 1.65 1.02 0.00 0.00
PIG 1.47 1.17 0.79 65.56 48.89
QAI 35.32 4.79 0.13 67.76 44.45

Table 8
RFOV, contour based measures.

Model Contour based measures

H1 H2 H3 TPC

l r r=l l r l=r l r l=r l r r=l

FM 7.13 2.17 0.30 2.29 0.85 0.37 7.65 3.02 0.39 82.40 5.01 0.06
COD 43.49 8.85 0.20 33.81 16.95 0.50 61.93 18.25 0.29 32.50 18.90 0.58
FFS 42.97 9.54 0.22 34.81 15.42 0.44 54.08 17.83 0.33 26.41 6.97 0.26
PIG 25.37 21.67 0.85 7.7 9.55 1.24 16.87 13.05 0.77 68.25 26.24 0.38
QAI 26.44 21.07 0.80 8.43 9.32 1.10 18.06 12.90 0.71 65.97 24.08 0.36

Table 9
RFOV, region based measures.

Model Region based measures

Jaccard Dice SEN HR

l r r=l l r r=l l r r=l l r r=l

FM 0.90 0.05 0.55 0.91 0.06 0.66 90.53 2.56 0.03 0.18 0.07 0.39
COD 0.18 0.04 0.22 0.31 0.10 0.32 53.04 6.91 0.13 29.20 4.69 0.16
FFS 0.19 0.06 0.31 0.33 0.11 0.33 56.27 12.99 0.23 21.05 9.17 0.43
PIG 0.63 0.24 0.38 0.70 0.24 0.34 63.40 28.18 0.44 4.53 5.93 1.30
QAI 0.58 0.25 0.43 0.66 0.24 0.36 58.63 28.86 0.49 5.48 5.86 1.06
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Table 10
Efficiency of initialization for different combinations of the modalities.

Model Initialization measures

Comp. Time Tcom , sec Correctly initialized Ncorr , % Correctly segmented Scorr , %

l r r=l

FM(U; E;D) 11.39 2.07 0.18 92.00 84.44
FM(E;D) 11.29 1.78 0.16 80.00 73.33
FM(U; E) 11.26 1.91 0.17 13.33 11.11
FM(U;D) 11.30 1.79 0.16 53.33 48.88

Table 11
Contour based accuracy for different combinations of the modalities.

Model Contour based measures

H1 H2 H3 TPC

l r r=l l r r=l l r r=l l r r=l

FM(U; E;D) 7.54 3.40 0.45 2.40 0.95 0.39 8.27 3.43 0.41 80.73 9.32 0.11
FM(E;D) 12.72 9.49 0.75 3.78 3.27 0.86 13.89 12.74 0.92 77.62 22.01 0.28
FM(U; E) 42.95 41.50 0.97 30.61 40.93 1.34 138.81 102.03 0.73 9.60 26.54 2.76
FM(U;D) 17.89 10.00 0.56 5.58 3.69 0.66 19.99 14.78 0.74 56.56 31.65 0.56

Table 12
Region based accuracy for different combinations of the modalities.

Model Region based measures

Jaccard Dice SEN HR

l r r=l l r r=l l r r=l l r r=l

FM(U; E;D) 0.89 0.07 0.78 0.90 0.08 0.88 89.99 4.20 0.05 0.24 0.14 0.58
FM(E;D) 0.81 0.08 0.10 0.88 0.08 0.09 89.60 4.20 0.05 4.01 7.70 1.92
FM(U; E) 0.36 0.29 0.80 0.47 0.31 0.66 77.42 41.15 0.53 37.10 21.53 0.58
FM(U;D) 0.60 0.21 0.35 0.73 0.21 0.29 84.21 14.79 0.17 7.40 7.67 1.04
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with recent clinical research [18,25], which reports that the Dop-
pler image alone does not significantly contribute to categorization
of solid masses.
6.6. Limitations of the method

The method requires a good quality Doppler image Draw. If Draw

does not present a well-defined cluster of Doppler spots, the proce-
dure works in the U � E mode, which may reduce the accuracy of
segmentation (see Table 10). Some low grade cancers may not
appear in the Doppler images. For instance, Adler et al. [2] reports
that ‘‘four percent of the cancers had no detectable [Doppler] flow”.
7. Conclusions

The proposed new automatic procedure for initialization of
active contours, applied to the segmentation of ultrasound images
of breast cancer, outperforms preceding algorithms. The procedure
includes FM initialization and a radial force based on the fusion of
the conventional US, Doppler, and elasticity images. Although it
requires training a decision tree, the procedure is also automatic.
We conjecture that the proposed algorithm is applicable to similar
US images without any modifications.
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