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Abstract: Precise localisation of an optic disk (OD) in the retinal images is one of the most important problems in the
ophthalmic image processing. Although a considerable progress has been made towards a computerised solution of
the problem, the numerical algorithms often fail on retinal images characterised by poor quality. Therefore, the authors
propose a new method suitable for low-quality images based on exploiting the convergence of the blood vessels to the
OD. The novelty of the proposed techniques includes clustering the vessels endowed with a novel correction
procedure and the vessel transform (VT) which measures the distance to the main clusters. The algorithm is integrated
into the scale-space (SS) analysis to detect the boundary of the OD. The integrated method is called SS algorithm with
VT (SSVT). SSVT has been tested on retinal images from two databases with fair and poor images against the fuzzy
convergence (FC) method and a modification of the circular transform proposed by Lu. The absolute improvement on
sensitivity of SSVT against FC and Lu’s are up to 12.37% and 8.18%. Bigger improvements of SSVT in terms of positive

predictive value are up to 37.46% and 30.84% against FC and Lu’s, respectively.

1 Introduction

Precise automatic localisation of an optic disk (OD) in the retinal
images is an important problem in the ophthalmic image
processing. Once the OD has been identified, many other regions
of clinical importance such as the fovea or macula can be easily
detected and/or localised. The OD 1is also important for
establishing a frame of reference within the retinal image. The OD
usually appears in the retinal images as a bright, yellowish,
circular or oval object, roughly one-sixth the width of the image in
diameter [1]. Any irregularity in the appearance of the OD is a
sign of abnormalities or diseases such as glaucoma, diabetic
retinopathy (DR) or hypertensive retinopathy [2].

Nowadays, one in ten people is advised for annual retinal
screening because of a variety of medical conditions [3]. However,
annual retinal screening is nearly impossible especially in
developing countries because of the huge gap between the number
of professional ophthalmologists and the patients. This implies the
necessity of automatic screening systems to assist the
ophthalmologists in diagnosing the early stage of diseases such as
glaucoma and DR using computer-based identification. Since the
eye fundus imaging is a frequent clinical procedure, the retinal
images are commonly used for a preliminary diagnosis and
detecting suspicious cases.

The conventional OD segmentation usually employs a suitable set
of features such as brightness, shape, size and the variation of the
grey level (entropy) and template matching. Lalonde er al. [4]
localised the OD by using a pyramidal decomposition based on
Haar discrete wavelet transform and segmented the OD using a
Hausdorff-based template matching. Li and Chutatape [5] localised
the OD by the principal component analysis (PCA) and detected the
OD’s boundary using an iterative searching procedure called the
active shaped model. Lowell et al. [6] performed a specialised
template matching, and segmentation by using an active contour
(snake). Lu et al. [3] employed brightness and texture to form a
model template. The OD region is determined by a pair of
morphological operations and an ellipse is fitted to the detected
OD region. Akram and Khan [7] employed the intensity variation
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and the grey levels as the major features characterising the OD.
Curvelet transform has also been applied to solve OD
segmentation problem in [8, 9]. Shahbeig and Hossein [10]
combined the curvelet transform with the PCA and morphological
operators based on geodesic conversions to obtain the OD region.
Pereira et al. [11] analysed the brightness of a series of blurred
images and applied the ant colony optimisation preceded by an
anisotropic diffusion filter. Morales et al. [12] also used PCA
combined with centroid calculation, stochastic watershed and
region discrimination. Dehghani et al. [13] used histograms of
each colour component. Hsiao et al. [14] localised the OD by an
illumination correction algorithm and segmented the OD contour
by using a supervised gradient vector flow snake model.
Ramakanth and Babu [15] proposed the OD localisation based on
approximate nearest neighbour field. Using the fact that OD
appears as a bright region, Pourreza-Shahri et al. [16] detected it
by using radon transformation of multiple overlapping windows.

One of the most successful works tested against many existing
algorithms is Lu [17]. The proposed modification of the circular
transform combined with evaluation of the brightness is claimed to
be more efficient, more accurate and faster than other
state-of-the-art techniques: a morphological approach proposed by
Welfer et al. [18], a vessel’s direction matched filter proposed by
Youssif et al. [19], localisation using dimensionality reduction of
the search space proposed by Mahfouz and Fahmy [20] and
genetic algorithms by Carmona ef al. [21].

The major drawback of the feature-based approaches is that they
often incorrectly localise the OD when the OD’s physical
appearances such as shape, colour, brightness or size become
abnormal. The OD obscured by blood vessels or only partially
visible (blur, shadows and noise) could be also misclassified.
Besides, the feature-based methods could be highly sensitive to
distractors which often appear in the retinal images [6].

In the meantime, a powerful subclass of the OD detection
algorithms based on the location of the vascular structures is often
overlooked. Only a few papers exploit the convergence of the
blood vessels to the OD. Akita and Kuga [22] traced the parent—
child relationship between blood vessels segments, tracking back
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to the centre of the OD. In addition to brightness and shape features
of the OD, Chrastek et al. [23] checked the area where vertically
oriented vessels converge. Foracchia er al. [24] used the fact that
all retina vessels originate from the OD and their paths follow a
similar directional pattern (parabolic course). To describe the
general direction of retinal vessels, a geometrical parametric model
was proposed, where two of the model parameters are the
coordinates of the OD centre. Niemeijer et al. [25] approximated
the location of the OD using k-nearest neighbour regression.
Dehghani ef al. [26] localised the OD by detecting the region
having the highest number of vessels, corners and bifurcation
points. Welfer et al. [27] and Zhang and Zhao [28] used the
assumption that the vascular network is alligned horizontally in
the retina image. Both work first segmented and skeletonised the
network of vessels and checked for the point where the main
vessels arcade fragment was intercepted by the horizontal line to
obtain the approximated location of OD. The major drawback of
this approach is that it is not rotationally invariant. Mendonca
et al. [29] use the entropy of vascular directions to quantify
occurrences and the diversity of vessel orientations of each pixel.
Dashtbozorg et al. [30] extended this idea using a multi-resolution
sliding band filter.

One of the most successful vessel convergence techniques are
introduced by Hoover and Goldbaum [1]. The method employing
the vessel convergence as the primary feature is based on the
fuzzy convergence (FC) endowed with a voting scheme. The
voting takes place on the integer grid of the original image. Each
vessel is represented by a fuzzy segment, whose area contributes
votes to its pixels. The summation of votes at each pixel produces
an image map representing the strength of the convergence of each
pixel. The map is then blurred and thresholded to produce points
of the strongest convergence. The FC techniques have been
applied on multiple scales and combined with a feature-based
approach employing the equalised brightness. The verification of
the method on STructured Analysis of the Retina (STARE)
database shows the highest performance overall (89%), and a
complete success on the healthy retina test cases (100%).
Nonetheless, the method does not consider the hierarchical
structure of the vessels and their importance. As a matter of fact,
the vessel network consists of the main vessels and several levels
of secondary vessels.

The main vessels converge to the OD, whereas the secondary
vessels are positioned randomly with regard to the OD. Therefore
the vascular network can be thought of as a collection of clusters
of connected conduits similar to the river networks. The clusters
converge to the OD in the sense that points belonging to the OD
are closer to each cluster than points not belonging to OD. This
concept is not always true if we consider convergence of
individual vessels. It is not hard to give an example where the
secondary vessels converge to a false OD.

Fig. 1 Original retinal images (left) and their corresponding VTs (right)

744

Therefore we propose new techniques based on clustering of the
vessels and a transform which measures the distance to the main
vessel clusters. The vessel transform (VT) is generated using a
hierarchical clustering combined with a special correction
procedure to test the validity of the clusters. The algorithm is
integrated into the scale-space (SS) analysis. The new algorithm
has been tested on poor quality retinal images from two databases
(172 images) against the FC method [1], and a recent modification
of the circular transform [17]. Furthermore, the space scale
boundary detection [31] was tested with and without the VT
option. The numerical experiments demonstrate that the proposed
algorithm outperforms the benchmark methods in terms of the
correct localisation of the OD and improves segmentation of the
OD based on the space scale scheme.

2 Vessel transform

The VT is given by

N
Vo) =3 D disip, <) 1)
i=1

where ¢; is the i™ cluster of vessels, N is the number of clusters,
p=(x, y) is an arbitrary point in the image and
dist(p, ¢) = mien llp = p'll. An introductory example in Fig. 1
displays sanfplé retinal images and the corresponding VTs. The
dark part of the VT image corresponding to the vessel
convergence region locates the OD.

Clearly, our approach requires a reliable and accurate vessel
segmentation method. At the moment, there exist numerous vessel
segmentation algorithms applicable to variety of retinal images
[32-35]. Our numerical experiments with available source codes
revealed a good performance of the automated retinal image
analyser [35, 36] developed by the Centre for Vision and Vascular
Science of Queen’s University of Belfast. The method is based on
thresholding of wavelet coefficients on different spatial scales and
vessel location refinement using the centreline spline fitting. The
method is unsupervised and does not use any masks or filters
since they often must be tailored for a particular type or resolution
of image and require modifications to be applied to others. As
opposed to that the choice of wavelet levels and thresholds does
not need to be changed for similar images. Following [35, 36], we
set the wavelet coefficients threshold to identify the lowest 20% of
coefficients as vessels. Although this typically produces an
oversegmented image, small isolated objects and holes inside the
vessels can be easily removed by morphological operations.

The input of the clustering algorithm is a collection of vessels (v,
vy, ..., V,u). Each vessel is represented by the Cartesian coordinates:
vi=((x, )i, (5 Y)i2s ---» (X, ¥);x,)- The first step is pre-processing
designed to remove the outliers: short, thin and faint vessels. It
requires the following thresholds: 7 is the length threshold, 7} is
the thickness threshold, 7, is the threshold on the grey-level
intensity of the vessel relative to the background. The second step
merges the vessels into clusters and removes the isolated vessels.
The merging step employs a threshold 73 on the maximum
distance between clusters which can be merged into a new cluster.
We apply a classical hierarchical bottom-up clustering endowed
with an original correction procedure. Initially, the algorithm treats
each vessel as a singleton ¢;=v;. Next, it successively merges
clusters ¢;, ¢; if dist(c;, ¢;) <T4 until they have been merged into
several well separated sets. The post-processing procedure detects
and removes the outliers (small clusters) by using the condition
N, < T;, where N, denotes the size of the cluster and 7}, denotes
the corresponding threshold.

Note that clustering does not include time-consuming tracing
procedures designed to detect the tree-like structures of the
vessels. However, if trained, the algorithm returns well separated
clusters sufficient to generate a VT which localises the
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Fig.2 Original image (top left), extracted vessels (top middle), segmented vessels (top right), removing short, thin and faint vessels (bottom left), removing small

clusters (bottom middle), final clusters (bottom right)

convergence region and consequently the OD. Fig. 2 illustrates the
proposed clustering method.

3 Correction algorithm

The VT-based segmentation of the OD requires that the resulting
clusters converge to the OD. Therefore for the vessel networks
separated into three or more clusters, we verify the quality of
convergence as follows. First, we evaluate the convergence region
) = argmin, V(p) and its centroid. Next, we withdraw the
clusters one by one from the collection and evaluate the
convergence regions Q’ corresponding to these new collections. If
for some Q', dist(Oq, Oq')> Tq, where Og is the centroid of Q,
O'q is the centroid of Q" and T, is the corresponding threshold,
the clustering is discarded. Our assumption is that if the vessels
strongly converge to €, the system without one cluster converges
approximately to the same region (see Fig. 3).

Furthermore, if min, (dist(c;, €1.)) < Ty, where Tyt is the
corresponding threshold and ¢; is the i™ cluster and Q. is the
centroid of Q (the cluster is close enough to the convergence
region), the clustering is considered successful. In this case, the
VT is included in the prescribed set of features for a further
evaluation.

4 Threshold selection

The proposed method requires the following thresholds: 7 is the
minimal acceptable length of the vessel for a particular image
(shorter vessels will be eliminated), 7; is the minimal acceptable
thickness, 7, is the maximum acceptable intensity of the vessel
relative to the background, 7y is the maximum distance between
the clusters which can be merged into a new cluster, 7} is the
minimum acceptable size of the cluster and T, Tyt used by the
convergence test (see Section 3). The thresholds are obtained
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using a bivariate quadratic approximation given by
T(p, 0) = a\p’ + a0" +asp+ a0+ aspo+ag  (2)

where 4 and o are the mean and the standard deviation of the
corresponding parameter evaluated for a particular image. For
instance, 7)= T\(u;, 01) is the threshold on the minimal acceptable
length of the vessel, whereas y; is the mean length of a vessel in a
particular image and o is the standard deviation (see Fig. 7).

5 SS algorithm with VT

The VT method with the improvements described in Sections 2—4
generated an approximated location of the OD but it has not yet
detected the boundary of the OD. To obtain the OD’s rim, we

‘ initial centroid
*corwernencu point of cluster 1, 2, and 3 3
' convergence point of cluster 1, 2, and 4

o convergence point of cluster 1, 3, and &

# 8 hMp

o convergence point of cluster 2, 3, and 4

Fig. 3 Convergence test
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Fig. 4 VT combined with the SS segmentation

integrate our approach into the SS boundary detection algorithm
proposed by Duanggate et al. [31]. The modified algorithm is
called the space scale algorithm with the VT (SSVT). Fig. 4
shows the proposed integration of SS and VT into the SSVT.

The SS approach is based on the original theory proposed by
Lindeberg [37] in 1994. The image is converted into a
one-parameter family of smoothed images. Objects (blobs) which
appear stable under smoothing at different scales along with their
features such as the size, the compactness, the entropy, the average
intensity etc. are considered as the OD candidates. We modify the
SS algorithm by adding the VT score as an additional feature. To
integrate the feature in the SS method, we use an automatic
decision tree generator available from the Waikato Environment
for Knowledge Analysis [38]. The examples of the decision trees
are given in Section 7.

6 Experimental setup

We tested the proposed method against the existing techniques on
two collections of images, that is, the STARE [39] which is a
standard collection available on the internet and a dataset
originally collected to detect the signs of retinopathy of
prematurity (ROP) by Dr. Sarah Barman with Kingston University

of UK. All digital retinal images from ROP were taken from
patients with non-dilated pupils using a KOWA-7 non-mydriatic
retinal camera with a 45° field of view. The images were stored in
JPEG format 640 x 480 pixels at 24 bits per pixel.

To reduce the inconsistency between human experts, the ground
truth was obtained from three ophthalmologists from Thammasat
University Hospital, Thailand. The ophthalmologists were asked to
hand-draw the OD rims on each retina image from two collections
three times. To check the inter-observer variability and
intra-observer variability, we used the voting overlapping score
defined as the ratio of an area in the image that at least two
ground truths agree on that it is part of OD to the area obtained
from the union of the three ground truth contours. The
inter-observer variability values of the experts are 0.86 and 0.91
for the ROP and STARE collections, respectively. The
intra-observer variabilities of each expert are 0.92 and 0.93 on
average for the ROP and STARE collections, respectively.

Images with bright, round and clear border of the ODs were
classified visually as ‘fair’, the rest is considered ‘poor’. There are
60 images with fair quality and 31 images with poor quality for
the ROP collection, whereas 31 images with fair quality and 50
images with poor quality for the STARE collection. Figs. Sa and
5b display examples of ‘fair’ and ‘poor’ images.

Our two collections of test images have been obtained by different
devices with different lighting conditions. Therefore, they require
different sets of thresholds which are obtained by the quadratic
regression (2). Fig. 6 illustrates the proposed threshold selection.
We train the method using the classic 70-30% ratio between the
training and the testing data.

To combine features in SS method, we use an automatic decision
tree generation available from the Waikato Environment for
Knowledge Analysis [38]. Features evaluated for the candidate
blob in scaled space are the size (s), the compactness (c), the
entropy (e), the average intensity (i) and the average value of the
VT (V). The resulting decision trees and the particular thresholds
are shown in Fig. 7.

Note that the decision trees indicate the importance of V, s and c,
whereas the branches including the entropy and the intensity have
been automatically pruned. The forthcoming Section 7 shows how
the VT improves the accuracy of the classification.

7 Experiments and results

In this section, we show and analyse results of applying the proposed
algorithm to the ROP and STARE collections of retinal images. We

Fig. 5 Examples of the ‘fair’ and the ‘poor’ images

a Fair images
b Poor images
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Fig. 6 Example of quadratic regression applied to the STARE collection
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Fig. 7 Decision trees for test collections

a ROP collection
b STARE collection

test the method against FC method [40] and a recent modification of
the circular transform proposed in [17]. Furthermore, we compare
the standard SS segmentation [31] and the SS method endowed
with the proposed VT.

IET Image Process., 2015, Vol. 9, Iss. 9, pp. 743-750
© The Institution of Engineering and Technology 2015

V > 0.84

@ S > 2091

@

® &

b

7.1 Performance of the VT in locating the OD
We applied and compared the performance of VT with the advanced

version of the circular transform Lu’s method [17] and FC method
[1]. Fig. 8 shows introductory examples when Lu’s method or/and
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Fig. 8 OD location: ground truth — solid line, VT — triangle, FC — circle
and Lu’s — square

FC fail, whereas the proposed method indicates the correct OD
location.

The accuracy of the OD locating was evaluated as follows. If the
convergence region 2 (see Section 3) is contained entirely inside the
ground truth contour, we consider it a correct location of the OD.
Lu’s method was considered successful if the centroid of the
circular transform contour was located inside the ground truth contour.

Table 1 shows the accuracy of the location of the OD location for
the fair and poor images processed by the VT, FC and Lu on the
STARE collection. The VT outperforms FC for both the groups
with the absolute improvement of about 6%. However, Lu’s
method is slightly better. This is because of the better quality of
the images in that database. However, the VT performs much
better on fair and poor quality images from ROP database as
follows: fair images: Lu’s-88%, VT-95% and poor images:
Lu’s-64.5%, VT-96.7%.

Furthermore, the advanced circular transform of Lu claims to be
the fastest and the most accurate as compared with line operator
method [18], geometrical model method [19], the vessel direction

Table 1 Accuracy of the OD location

matched filter [20] and the dimensionality reduction method [21].
Therefore we conjecture that our proposed algorithm should
outperform the above-mentioned procedures for the poor images
as well.

7.2 Performance of the SSVT in detecting the OD region

Next, we combine our approach with the SS algorithm for detecting
the OD proposed by Duanggate et al. [31]. We extend the SS
algorithm by adding the VT score as an additional feature. The
modified algorithm is called the SSVT. Our OD classification is
performed using a decision tree which includes the
above-mentioned features along with the VT-feature. As opposed
to the previous section where the location of the OD was
evaluated by finding the centroid of the convergence area, the OD
region is now determined by using a combination of the SS which
generates the candidate blobs and the proposed decision tree (Fig. 7).

We evaluate the performance using two standard schemes:
sensitivity and positive predictive value (PPV). The first one
reveals the accuracy while the second one reflects completeness of
the obtained solution. The sensitivity is defined to be the ratio of
the number of pixels detected correctly as OD to the total number
of pixels detected as OD. The PPV is the ratio of number of pixels
detected correctly as OD to the total number of pixels of OD from
the ground truth.

The algorithms were tested on the ROP and the STARE
collections. Fig. 8 shows examples when SSVT outperforms the
other two approaches. The VT-feature has a strong impact on the
blob classification process. In many cases, the SS and Lu fail to
detect the OD because of insufficient information provided by the
basic features. As opposed to that, SSVT employs the convergence
of the vessels which is not sensitive to the variation of the contrast
and the noise as long as the entire vascular network or at least a
major part of it has been correctly detected and clustered.

The tests of the performance of the SSVT against the SS and Lu’s
are presented in Table 2. The bold values represent the best result in a
particular category. The SSVT outperforms SS and Lu’s in ‘both
quality measures for each group of the images (fair and poor) and
for each collection of data’. In particular, when the image quality
is poor, the SSVT outperforms the other two approaches in terms
of PPV considerably (Table 3).

For the fair images, the advantages of the SSVT over SS in
average sensitivity are up to 2.09% (STARE) and 4.45% (ROP).
The SSVT underperforms Lu’s in average sensitivity by 10.19%
(STARE) but outperforms Lu’s by 8.18%. For the poor images,

Collections Image quality Accuracy, % Absolute improvement VT against FC, % Absolute improvement VT against Lu’s, %
FC VT Lu's
ROP fair N/A 95 88.33 N/A 6.68
poor N/A 96.77 64.52 N/A 32.25
STARE fair 90.32 96.77 100 6.45 -3.23
poor 88 94 98 6 -4
average (STARE only) 89.16 95.39 98.77 6.23 -3.38
average (ROP only) N/A 95.89 76.42 N/A 19.47

VT against FC and Lu’s circular transform.

Table 2 Average sensitivity and PPV of SS and Lu’s against SSVT

Collections Image quality Average sensitivity Average PPV
Lu’s SS SSVT (SSVT-Lu’s, SSVT-SS) Lu's SS SSVT (SSVT-Lu’s, SSVT-SS)
ROP fair 74.29 80.39 82.47 (+8.18, +2.08) 66.42 86.08 87.41 (20.99, 1.33)
poor 61.28 45.51 58.18 (-3.1, 12.67) 46.39 53.01 83.85 (37.46, 30.84)
STARE fair 72.59 57.95 62.4 (-10.19, 4.45) 84.66 67.09 74.14 (-10.52, 7.05)
poor 41.23 43.27 45.76 (4.53, 2.49) 69.89 59.18 74.59 (4.7, 15.41)
average 62.35 62.2 64.26 (1.91, 2.06) 66.84 66.34 80 (13.16, 13.66)
IET Image Process., 2015, Vol. 9, Iss. 9, pp. 743-750
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Table 3 Computational time Lu’s against SSVT

Percentage of test  Number of radial Average time Average time

pixels, % line segments Lu’s, min SSVT, min
20 40 1.57 4.85

20 180 6.63

60 40 4.29

60 180 18.84

Fig. 9 Examples of the OD segmentation, 1-ground truth, 2-SSVT, 3-SS,
4-Lu’s

the SSVT outperforms SS by 2.49% (STARE) and 12.67% (ROP).
The SSVT outperforms Lu’s in average sensitivity by 4.53%
(STARE) but underperforms Lu’s slightly by 3.1%.

A good improvement of the SSVT over SS and Lu’s is notable
from the PPV results on the ROP collection. For the fair group of
the ROP collection, SSVT outperforms SS by 1.33% and LU’s by
20.99%, whereas bigger improvements obtained for the poor group
of the same collection, SSVT outperforms SS by 30.84% and Lu’s
by 37.46%. For the fair group of the STARE collection, SSVT
outperformed SS by 7.05% but underperformed SS by 10.52%.
For the poor group of STARE collection, SSVT outperformed SS
and Lu’s by 15.41 and 4.7%, respectively (see Fig. 9).

It should be noted that in [31] SS was found to be superior with
regard to the OD segmentations based on the morphological
operations [41] and the circular Hough transform applied to ROP
[40]. Moreover, in [17] Lu’s claimed to outperform methods [18—
21]. Therefore the SSVT outperforms the above-mentioned
methods as well with a greater advantage. Still there are images
where SSVT fails. Those images are usually characterised by
unclear vascular networks combined with noise and shadows
shaped similarly to the vessels.

Furthermore, although Lu’s method is claimed to be the fastest,
actually, its performance strongly depends on the threshold on the
grey level to select possible candidates for the centre of the OD
and the number of radial segments used to verify the circularity of
the object boundary. Lu also claims that the centre of the OD
‘nearly always lies within the first 20% brightest pixels within the
OD probability map’. However, there are many images for which
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it is not correct. In turn, increasing this threshold, increases the
computational time. For instance, changing the threshold from 20
to 60% doubles it. In turn, changing the angular step between the
required radial segments from 6° to 2° increases the computational
time of Lu’s by a factor of 10. As opposed to that the
computational time of the proposed method does not depend on
the thresholds. Our method has been programmed in MATLAB
and requires about 4 minutes to process a standard database image
600x 800 on a Dell computer with 3.30 GHz Intel Core i3
Processor and 4 GB of random access memory.

The improved accuracy of the proposed algorithm applied to the
poor quality images makes it possible to suggest a switch from the
circular transform-based methods to VT scheme when the quality
of the OD boundary is poor.

8 Limitations of the method

In some cases, the clustering algorithm returns an unacceptable result
which includes only one or two clusters. In this case, we could not
reliably test the convergence. Technically, one can modify the
thresholds and merge the vessels into a new set of clusters.
However, an algorithm based on this idea is still an open problem.
In this case, following [31] we simply discard the VT-feature and
apply the SS algorithm in its original version [37]. The numerical
experiments show that the number of the images characterised by
poor convergence usually does not exceed 10%.

The algorithm requires a good quality of the vessel segmentation
in the sense of strong convergence of the vessel network to the OD
(see Section 3). In case of poor convergence, the algorithm must
automatically recognise this and switch to the OD detection based
on other features such as the intensity and compactness (the
circular transform). Finally, the algorithm includes seven
thresholds which require training and construction of the decision
trees. The thresholds could be different for different datasets.

9 Conclusions

The proposed new VT improves the accuracy of locating the OD. The
combination of the VT with the feature-based SS segmentation
improves the quality of the OD segmentation. The absolute
improvement of the SSVT over SS measured in terms of sensitivity
and PPV is approximately 14% and 30%. Respectively the
improvement in approximating the location of the OD is up to
32%. In addition, the absolute improvement of the SSVT over Lu’s
method measured in terms of sensitivity and PPV is approximately
8% and 37.46%. However, such an improvement can be achieved
given a good segmentation of the vessels and when the vessel
network strongly converges to the OD.
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