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a b s t r a c t 

We propose a novel initialization method designed for active contours (AC) and the level set method 

(LSM), based on walking particles. The algorithm defines the seeds at converging and diverging configu- 

rations of the corresponding vector field. Next, the seeds “explode”, generating a set of walking particles 

designed to differentiate between the seeds located inside and outside the object. The exploding seeds 

method (ESM) has been tested against five state-of-the-art initialization methods on 180 ultrasound im- 

ages from a database collected by Thammasat University Hospital of Thailand. The set of images was 

additionally partitioned into malignant tumors, fibroadenomas and cysts. The method has been tested for 

each of those cases using the ground truth hand-drawn by leading radiologists of the hospital. The com- 

peting methods were: the trial snake (TS), centers of divergence (CoD), force field segmentation (FFS), 

Poisson Inverse Gradient Vector Flow (PIG), and quasi-automated initialization (QAI). The numerical tests 

demonstrated that CoD and FFS failed on the selected test images, whereas the average accuracy of PIG 

and QAI were lower than that achieved by the proposed method for both AC and the LSM. The LSM 

combined with the ESM provides the best results. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Since the seminal work [1] AC (snakes) have been applied to

many segmentation problems derived from different applications.

Further improvements are gradient vector flow (GVF) [2] and the

generalized gradient vector flow field (GGVF) [3] . Some variations

of these ideas are multidirectional GGVF [4] and the non-linear dif-

fusion model [5] . Recent modifications of the GVF-type model are

Normal Gradient Vector Flow [6] , Infinity Laplacian [7] , Harmonic

Gradient Vector Flow [8] , Convolution Vector Flow [9] , Dynamic Di-

rectional Gradient Vector Flow [10] , Adaptive Diffusion Flow [11] ,

and Multi Feature Gradient Vector Flow [12] . A comparative study

of AC methods in medical image segmentation is presented in [61] .

The accuracy and the computational time of segmentation pro-

duced by the AC depend on their initial positions (seeds). The

seeds must be initialized close to the desired object. Otherwise the

AC attach to false boundaries created by noise and artifacts. 
∗ Corresponding author. 

E-mail address: makhanov@siit.tu.ac.th (S.S. Makhanov). 
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One of the popular solutions is analysis of the vector field gen-

rated by the GVF-type model. Since the noise and small artifacts

enerate star-like (divergent or convergent) configurations of the

ector field, multiple AC generated around them avoid the false

oundaries. For instance, [13] applies force field segmentation (FFS)

o divide the image domain into disjointed regions representing

he capture range of the external force field. The AC are individu-

lly initialized within each of the enclosures and moved to the tar-

eted object boundary within it, avoiding being attracted by other

bjects. However, the algorithm transforms the image segmenta-

ion problem into a vector field segmentation problem, which is

ifficult to solve if strong noise is present. 

The idea to initialize the snakes at the centers of diver-

ence/convergence (CoD) of the corresponding vector field was

roposed in [14] . Ge and Tan [15] introduce the CoD by comput-

ng relative directions of the vector field in a 2 × 2 window. He

t al. [16] uses phase portrait analysis (PPA) [17] to find critical

oints of the vector field. Although PPA has been used in a vari-

ty of image processing applications, e.g. [17–22] , neither [15] nor

16] differentiate the external and internal snakes. Therefore, the

mage produced by [15] requires a special merging procedure to re-

https://doi.org/10.1016/j.patcog.2018.01.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.01.032&domain=pdf
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ove boundaries due to over segmentation. Further, [16] uses only

eeds characterized by a certain gray level associated with the ob-

ect. Therefore, the method fails on low contrast images character-

zed by shadows and artifacts such as the ultrasound (US) images

f breast abnormalities. 

The importance of the critical points was noticed in [23] . The

uthors propose to merge multi-snakes initialized around those

oints for segmentation of the MRI images of lungs. However,

he method works only when the snakes are initialized inside the

ungs. 

A competing idea is placing the seed points uniformly or

andomly over the entire image, evolving the snakes from each

eed point and analyzing the resulting configuration. For instance,

24] runs ACs until their convergence to a local minima and con-

tructs a pattern image (an annular band around each snake). Next,

he algorithm projects each pattern image into an already trained

rincipal component classifier. The snakes associated with a lower

econstruction error are classified as objects and others as nonob-

ects. However, the required classifier to validate the final configu-

ation must be trained. Classification of randomly initialized snakes

s computationally expensive and may lead to considerable inaccu-

acies. The final configurations, which depend on the relative speed

f the snakes’ evolution, can differ considerably. 

Another interesting approach is the quasi-automated initializa-

ion (QAI) method by Tauber et al [25,26] . The method employs

oDs, combined with a tracing procedure to create a “skeleton” of

he object, consisting of centers of strong and weak divergence.

he centers of weak divergence are the points where the vectors

f the GVF diverge in one (either horizontal or vertical) direction.

he centers of strong divergence feature both horizontal and verti-

al divergences. The initial snake is generated around the skeleton.

owever, the initialization is not entirely automatic. The algorithm

till requires at least one manually generated point inside the ob-

ect. Moreover, in noisy images, the skeleton evolves outside the

oundary of the object even though the manually generated point

s correct. 

Poisson Inverse Gradient Vector Flow (PIG) [27] establishes a

elationship between the external force field and the underlying

xternal energy field via the solution of the corresponding Poisson

quation. The isoline of the minimum energy is selected as the ini-

ial contour. The model has been applied to 2D and 3D cases for a

ariety of medical images. However, the method may suffer from

ncomplete isolines, as well as from over segmentation. 

An automatic initialization method has been proposed in

28] for PET images of the liver. The candidate contours are gen-

rated by Canny edge detection and subsequently classified by a

enetic algorithm. The algorithm has been applied to segmentation

f face contours in video files [29] . A similar idea was introduced

n [30] for detection of the synovial boundaries in US images. How-

ver, the proposed initial snakes selected from the edge map are

ot robust and may not be applicable to multiple objects. 

The initialization algorithms for the US images often rely on

ray levels and textures to place the seed points inside the tumor

31–33] . Saliency and feature maps have been proposed in [34] .

ergani et al. [35] introduces a special vector field to hybridize the

VF and the texture. A Chan–Vese type model is proposed in [36] .

 few papers related to a specific medical image processing task

se the typical position of a human organ in the US images (see,

or instance, [37] ). However, these models are image dependent

nd may not work if strong noise is present. 

Trial snakes (TS) method, combined with PPA, was applied to

S images of breast cancer in [38] . The PPA makes it possible to

etect the centers of convergence and divergence, as well as at-

racting and repelling nodes. The algorithm differentiates between

he internal and external seeds by running multiple TS from the

ritical points and checking their intersections with the boundary
f the image. The most serious drawback of TS is that it requires a

onsiderable amount of computational time. 

In 1988, Osher and Sethian proposed the level set method

LSM) [44,57] , in which the contour curve is implicitly represented

s the zero level set of a high dimensional function (also called

he level set function). The method is a strong competitor of AC

ince it can automatically handle topological changes of multiple

ontours. The contours can merge, split and collapse in a natural

nd efficient way, which is not allowed in parametric AC [45] . 

The existing LSMs are categorized into edge-based [44–47] and

egion-based versions [48–52] . The region based models often pro-

uce poor segmentation results due to a wrong movement of the

volving contour when the image is characterized by a heteroge-

eous intensity. This model is “very sensitive to initialization and

asily gets stuck into local minima” [53,54] , which is a major prob-

em for complex medical images. 

Through stop functions, edge-based LSMs use the gradient in-

ormation to attach the contour curve to the object boundary. Since

he gradient is used as the stopping criteria, edge-based LSMs seg-

ent images without any limitations on the homogeneity of the

bjects of interest. A classical example of an edge based LSM is the

eodesic AC model proposed by Caselles et al. [45] . Distance regu-

arized level set evolution (DRLSE) proposed by Li et al. [46,47] is

ne of the most popular edge-based LSMs. The method eliminates

he need for re-initialization of the contour required by the pre-

eding methods, and thereby avoids its induced numerical errors. 

All of the above initialization methods can be applied, to obtain

he initial contour for the LSM close to the genuine boundary of

he object, or initialize multiple initial contours. 

Therefore, we have developed a new initialization method suit-

ble for both: AC and LSM. We compare it with preceding methods

n terms of efficiency and accuracy. 

. Methodology 

The new fast algorithm for automatic initialization combines a

ew force field analysis based on circular projection (CP), multiple

nitial contours and walking particles generated by the exploding

eeds. 

The main steps of the ESM algorithm are given below. 

1. Preprocessing (a standard procedure such as Gaussian filtering).

2. Evaluation of the gradient vector field. 

3. Detection of the converging/diverging configuration (stars) us-

ing CP. 

4. Merging closely located stars into a single region. 

5. Initializing walking particles generated by seeds at the star-like

configurations. 

6. Selecting seeds located inside the object and initializing the ini-

tial contours. 

7. Segmentation by AC or LSM. 

It should be noted that the idea of using walking particles for

dge detection has been proposed in [39] . However, their use for

nitialization has been overlooked. Besides, [39] employs “charged ”

articles which attach themselves to the edges. As opposed to that,

ur proposed particles bounce off the edges. This creates a totally

ifferent model suitable for fast initialization. Therefore, the main

ontribution of this paper is a new exploding seed method (ESM)

o automatically initialize AC and the initial surface for the LSM in

he US images of breast cancer. 

The ESM has been tested against five state-of-the-art mod-

ls mentioned above, namely, TS [38] , FFS [13] , CoD [15,16] , QAI

25,26] , and PIG [27] . With regard to the above methods, the ESM

rovides faster and more accurate initializations, which leads to

ore accurate segmentations. The proposed algorithm has been
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Fig. 1. Typical graph P + (θ ) ( P −(θ )) for the repelling or attracting star. 

Note that we also apply CP at the edge detection stage (preprocessing) using the 

fact that D i, j must be large at the boundary. 
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combined with a recent modification of AC called the Adaptive Dif-

fusion Flow (ADF) snakes [11] and the recent distance regularized

level set method (DRLSE) [46,47] for a set US images of breast ab-

normalities (benign and malignant). The above methods were se-

lected as the most prominent representatives of the AC and LSM

families. Finally, we compare AC and the LSM. The LSM with the

walking particles provides the best results. 

2.1. Active contours 

An active contour (snake) is a parametric curve X ( s ) ≡ ( x ( s ), y ( s ))

which grows or contracts inside the image to attach itself to the

boundary of the desired object. The evolution of the snake is sim-

ulated by Euler equations, corresponding to minimization of a cer-

tain energy functional [1] . The equations are given by 

a X ss + b X ssss + V = 0 , (1)

where the subscripts denote partial derivatives, a and b are weight-

ing parameters to control the snake’s tension and rigidity, and

V ≡ ( v x , v y ), the GVF field. One of the most popular is the gener-

alized gradient vector flow (GGVF) [3] , obtained by solving the fol-

lowing system of partial derivative equations 

 t − g ( | ∇ f | ) ∇ 

2 V − h ( | ∇ f | ) (∇ f − V ) = 0 , (2)

where g( | ∇ f | ) = e −( | ∇ f | /K ) , h ( | ∇ f | ) = 1 − g( | ∇ f | ) , f = ∇ G σ
∗I,

G σ is the Gaussian kernel with the standard deviation, σ and K is a

calibration parameter. Among numerous extensions of this idea are

Normal Gradient Vector Flow [6] , Infinity Laplacian [7] , Harmonic

Gradient Vector Flow [8] , Convolution Vector Flow [9] , Dynamic

Directional Gradient Vector Flow [10] , ADF snakes [11] , and Multi

Feature Gradient Vector Flow [12] as well as statistically based AC

such as the Student’s-t mixture model [56] . In this paper we use a

modification of multiple ADF snakes, capable of merging, splitting,

and collapsing (disappearing) when necessary. 

2.2. Level set method 

The contour X ( s, t )as the zero level set of a time dependent

level set function (LSF) φ( x, y, t ) Assuming that the embedding LSF

takes negative values inside the zero level contour and positive val-

ues outside the Euler equation for the DRLSE energy functional is

given by 

φt = μdiv (d p |∇ φ|∇ φ) + λδε (φ) div (g ′ |∇ φ| / ∇ φ) − αg ′ δε (φ) , 

where g ′ ( x, y ) is the DRLSE edge indicator function given by 

g ′ = 

1 

1 + | f | 2 . 
μ, λ, α are the weighting coefficients, d p is the double-well

potential for the distance regularization [44,45] and δɛ is a “hat”

function with a variable support ɛ and amplitude 1 
2 ε [47] . 

DRLSE not only eliminates the need for re-initialization required

by the preceding LSM routines, but also allows the use of a binary

step function as the initial LSF. The region of non-zero LSF can of-

ten be obtained by a simple rough segmentation, such as thresh-

olding. Consequently, only a small number of iterations is required

to move the zero level set to the desired object boundary. The re-

cent modifications are the Local Regional Fitting LSMs [54,55] and

the hybrid models which combine the region and the edge-based

fitting terms. Examples are the Dual Minimization LSM [58] and

the Hybrid Diffusion LSM [59] (see also a recent survey in [60] ).

It is overkill to present all the different level-set methods in this

short paper, therefore, in the forthcoming chapters we use DRLSE

as one of the most popular representatives of the LSMs. 
.3. Circular projection 

Consider a window W 

k 
i, j 

with size k , centered at a point i, j , on

 discrete vector field V i, j . The CP is defined by 

 

+ 
i, j 

(θ ) = 

∑ 

i, j 

⎧ ⎨ 

⎩ 

(
pro j v R ( θ ) V i, j 

)
V i, j ∈ W 

k 
i, j 

2 
if pro j v R ( θ ) 

V i, j ∈ W 

k 
i, j 

V i, j > 0 , 

0 , otherwise , 

nd 

 

−
i, j ( θ ) = 

∑ 

i, j 

⎧ ⎨ 

⎩ 

(
pro j v R ( θ ) V i, j 

)
V i, j ∈ W 

k 
i, j 

2 
if pro j v R ( θ ) 

V i, j ∈ W 

k 
i, j 

V i, j < 0 , 

0 , otherwise . 

here v R (θ ) = 

(
cos θ
sin θ

)
, 0 ≤ θ ≤π . 

Similarly to PPA [40–42] , CP reveals the “signatures” of the most

mportant configurations which characterize the vector field. How-

ver, CP has a wider range than PPA. In particular, PPA can not de-

ect the “boundary corner” or a chaotic vector field. Furthermore,

PA is based on linearization of the underlying vector field and

ncludes star, saddle point, repelling/attracting node, node saddle,

hear, center, and focus. Therefore, one of the above classes must

e selected even when the field is entirely random. The configura-

ions “center” and “focus” are practically useless since the images

sually produce irrotational vector fields. As opposed to that, CP

oes not rely on linearization. The patterns include the “boundary

orner”, “chaotic” vector field (see Table 1 ), allowing other config-

rations to be defined. 

We introduce a “star detector” given by 

 i, j = max ( max P + 
i, j 
(θ ) , max 

θ
P −

i, j 
(θ )) − min ( min 

θ
P + 

i, j 
(θ ) , min 

θ
P −

i, j 
(θ )

The detector uses the fact that the attracting and repelling stars

re characterized a by small amplitude of the projections P + (θ )

nd P −(θ ) ( Figs. 1 and 2 illustrate the techniques). 

.4. Exploding seeds 

The seeds are initialized around each repelling or attracting

onfiguration detected by the CP. Next, the initial seeds simulta-

eously “explode”, generating a set of N p particles moving initially

long a radial direction with regard to the center of the seed (see

ig. 3 (a)). The velocity of particles is subjected to random fluctu-

tions, which prevent them from entering into repeated (cyclic)

rajectories. The key feature of the model is that the particles are



A. Rodtook et al. / Pattern Recognition 79 (2018) 172–182 175 

Table 1 

Patterns of circular projection. 

CP Pattern Description Image Vector field 

Repelling or attracting node Noise (small or large groups of noisy pixels) 

Boundary Large gradients of the edge map 

Boundary corner Large gradients of the edge map at the corner 

Slowly varying background (shear) Relatively uniform gradients 

Chaos Noise with random dark and light shadows 

(a) (b)

Fig. 2. CP method (a) ideal diverging configuration (light area indicates small D i, j ) (b) distorted diverging configuration (the method still works). 
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v  
ouncing off the internal and external edges and disappearing (dy-

ng) at the boundary of the image. Those initialized inside the

umor stay inside, whereas particles initialized outside eventually

nd their way to the boundary of the image, and subsequently get

eleted. Finally, since the majority of the surviving particles be-

ong to the tumor, this separates the external and internal seeds

 Fig. 3 (b)). The external seeds are used to initialize the AC or LSM

ontours ( Fig. 3 (c) and (d)). 

In order to avoid repeated trajectories (loops), the speed of each

article is subjected to small random perturbations (noise). 

Let c i be the center of the i -th converging/diverging star. The

elocity of a particle i, j is then given by 

 i, j = αv d,i, j + βv r,i, j , (5) 

here α, β are weighting parameters. The initial determinis-

ic component of the velocity is given by v d,i, j = ( 
cos 2 π j 

N p −1 

sin 

2 π j 
N p −1 

) ,

j = 0 , N p − 1 . 
When the particle bounces off the edge 

 d,i, j,new 

= −v d,i, j , (6) 

The trajectory p i, j (t) ≡ ( 
x i, j (t) 

y i, j (t) 
) of the particle i, j is given by 

p i, j = c i + v i, j t, 

efore the first collision and by 

p i, j = e j + v i, j t 

fter a collision with the edge e j , where t denotes the pseudo-time.

As already noted, using solely v d produces repeated (cyclic) tra-

ectories. The random component v r prevents the model from en-

ering into repetitions (see Section 5 for further discussion regard-

ng the relationship between v d and v r ). The particles may get

rapped between two or more neighboring edges. Such particles

re detected, deleted, and re-initialized. 

In order to ensure that the particles do not leave the object,

 j must satisfy: | v j | ≤ min T , where T is the thickness of the edge.
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Fig. 3. Elimination of external seeds (a) seeds “explode”, (b) walking particles, (c) seeds for AC, (d) seeds for DRLSE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Deterministic vs. random component of velocity. 

α S (# of iterations) T comp (computational time), sec 

0.9 677 8.43 

0.8 634 7.78 

0.7 727 9.73 

0.6 767 10.19 

0.5 646 8.12 
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Therefore, on each step, v j is normalized, e.g. v i, j,new 

= 

T v i, j 

| v i, j | . We do

not provide a method to find T . However, if T is unknown it is safe

to consider T = 1. 

If the particle reaches the boundary of the image, it is con-

sidered “dead”. The number of particles which become dead at a

certain step of the algorithm is called the death rate d . The algo-

rithm terminates when the death rate d becomes sufficiently small.

We apply the following stopping criterion: ˜ d ≤ 0 . 01 N part , where

N part is the total number of particles and 

˜ d is the death rate av-

eraged over several steps of the algorithm. The reason for using
˜ d is that at some steps d = 0 although the average death rate ˜ d is

still large. Further, at the first steps d = 0 because the particles still

did not reach the boundary. Therefore, this criterion applies when

d reaches its maximum and starts declining (which can be easily

detected). 

Further, when the ESM is terminated, the seeds are classified

according to the average lifetime of the corresponding seed. De-

note l i, j , the lifetime of a particle i belonging to the seed j , where

j = 1 , p and p is the number of seeds, i = 1 , N j where N j is the

number of particles belonging to the seed j . The lifetime of a par-

ticle ( i, j ) is the number of steps the particle stayed “alive”. The

average lifetime of the seed is defined by l j = 

1 
N j 

∑ N j 
i =1 

l i, j . If l j ≤�l ,

where �l denotes the corresponding threshold, the seed is classi-

fied as external, otherwise, as an internal seed. 

Our forthcoming numerical experiments show that the model

with appropriate control parameters separates the internal and ex-

ternal seeds for the US images with a 100% success rate. 

The video demonstration of the method is at http:

//onlinemedicalimages.com/index.php/en/presentations 

2.5. Randomizing walking particles 

Recall that the velocity of a particle is given by v i, j = αv d,i, j +
βv r,i, j , where α, β are weighting parameters corresponding to the
andom and deterministic component of v i, j . The parameter β en-

ures that the particles do not enter cyclic trajectories, so that a

ajority of the external particles sooner or later leave the image.

n the other hand, too large β leads to abrupt trajectories and

lows down the model. 

Consider a normalized velocity, i.e. v i, j = αv d,i, j + (1 − α) v r,i, j ,

 v i, j | = 1 . 

Table 2 illustrates manual tuning of the parameter α using 15

dditional US images. The images were randomly selected from the

atabase. None of the images was included in our basic test set of

80 images. 

The model stops when 90% of the outside particles leave the

mage domain. Clearly, for this image collection, α ≈ 0.8, provides

he optimal computational time. 

.6. Multiple snakes 

The next stage of the algorithm employs multiple AC or LSM

volving inside the tumor. The snakes attached to the diverging

tars grow and merge until they reach the boundary of the tumor.

he snakes initialized around the converging stars grow, using the

nverted GVF-type vector field until they stop. These snakes are

e-initialized by offsetting them by several pixels to pick up the

epelling component of the vector field. The snakes S 1 , S 2 merge

henever dis t H 1 ( S 1 , S 2 ) < δ, where δ is the merging threshold and

is t H 1 is the Hausdorff distance (see Section 3 ). Some of the snakes

http://onlinemedicalimages.com/index.php/en/presentations
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nitialized around the repelling and attracting stars might intersect.

n this case, a special tracing procedure generates a joint growing

ontour. For the LSM, the contours merge or collapse automatically.

o additional procedures are needed. 

. Performance measures 

In order to compare the ESM with the conventional algorithms

e introduce the following performance measures. 

.1. Contour based accuracy measures 

• The Hausdorff distance is given by dis t H 1 (X, Y ) =
max { max 

a ∈ X 
min 

b∈ Y 
|| a − b|| , max 

b∈ Y 
min 

a ∈ X 
|| a − b|| ) , where || || denotes

the Euclidian distance, X is the ground truth contour, and Y the

resulting contour. 
• The averaged Hausdorff distance: dis t H 2 obtained from dis t H 1 by

replacing the internal max by the average. 

• The relative Hausdorff distance: dis t H 3 (X, Y ) = 

dis t H 1 
(X,Y ) 

L X 
ξ ,

where L X is the length of the true contour, and ξ = 10 0 0 is

the normalizing coefficient. The distance allows evaluating the

relative importance of the difference between the two curves.

For instance, if dis t H 1 (X, Y ) = 10 , and L X = 100 pixels, the er-

ror is unacceptable, however, if for instance, L X = 10 , 0 0 0 , then

dis t H 3 is negligible. The importance of the Hausdorff distance in

comparing planar curves is that it is parametrization-invariant.

Although dis t H 1 is not a distance in a rigorous mathematical

sense (it does not satisfy the triangle inequality), [43] shows

that it is the best for matching the curved objects. 
• The contour-based true positive rate is T P c = 

T P Y 
N Y 

, where TP Y is

the number of true positive pixels, and N Y is the total number

of pixels belonging to the resulting active contour. 

.2. Region based accuracy measures 

• Sensitivity: SEN = 

T P 
T P+ F N . 

• Specificity: SP C = 

T N 
T N+ F P . 

• Accuracy: ACC = 

T P+ T N 
T P+ T N+ F P+ F N . 

• Jaccard index: J = 

| X ′ ∩ Y ′ | 
| X ′ ∪ Y ′ | , 

here TP, TN, FP , and FN are the region-based true positive, true

egative, false positive, and false negative and where X 

′ and Y ′ the

et of pixels corresponding to the ground truth region and the re-

ulting region respectively. 

.3. Performance of initialization procedure 

Observe that the accuracy measures introduced in

ections 3.1 and 3.2 are only supplementary because they de-

end on the segmentation engine. Therefore, the performance of

he initialization is evaluated by 

• Percentage of images for which the internal and external seeds

were correctly detected. We denote this performance indicator

by N corr . 
• Percentage of images for which the contour was correctly seg-

mented. The final snake is considered correct if dis t H 2 (X, Y ) ≤
�var . The threshold �var = 3 was selected based on the intra-

inter ground truth variation. In our experiments the ground

truth contours drawn by the same expert/different experts dif-

fer as much as 3 units measured by dis t H 2 . 

As noted above, the segmentation accuracy depends not only on

nitialization, but on the segmentation model as well. In this paper

e test closely related AC and LSM type segmentation methods.
ther methods such as clustering and region growing might bene-

t from the proposed ESM. However, they are out of the scope of

his paper. 

. Image acquisition 

The algorithm has been tested on 60 US images of breast can-

er, 60 images of cysts and 60 images of fibroadenoma, from 180

ifferent patients (see Fig. 4 ). 

The images were obtained by a Philips iU22 ultrasound machine

t Thammasat University Hospital. The ground truth contours have

een hand-drawn by three leading experts with the Department of

adiology of Thammasat University using an electronic pen and a

amsung Galaxy Tablet computer. The final ground truth was ob-

ained by the majority voting rule (two out of three). The resolu-

ion ranges from 200 × 200 to 300 × 400 pixels. 

Each type of image has its own specific features, which may

resent some problems for segmentation routines. Malignant tu-

ors are characterized by irregular spiculated boundary. (See

ig. 4 (a) and (a ′ )). It is well known that neither AC nor the LSM

re able to accurately resolve deep concavities and sharp corners

ppearing at that type of the boundary. In turn, the US images of

broadenoma are characterized by a very low contract. 

The gray levels inside the tumor are practically identical to

hose belonging to the shadows near the tumor. This creates the

ell known problem of boundary leakage [11] (See Fig. 4 (b) and,

b ′ )). Finally, cyst seems to be one of the simplest objects. How-

ver, many cysts are attached to large irregular shadows, artifacts,

nd random noise (see Fig. 4 (c) and (c ′ )). Therefore, the procedure

o generate an initial contour based on tracing (such as PIG) often

elects a wrong initial boundary. Our method as well as the five

ompeting state-of-the-art methods, namely, TS[39], FFS [13] , CoD

15,16] , QAI [25,26] , and PIG [28] , were applied without any modi-

cations relative to the specific type of the images. 

The efficiency of the initialization method is evaluated using the

umber of correctly initialized seeds N corr (all seeds must be ini-

ialized inside the object) and the number of correctly segmented

umors S corr , such that dis t H 2 (X, Y ) ≤ 3 (see Section 3.3 ). 

The segmentation accuracy is evaluated by three different mod-

fications of the Hausdorff distance, H 1 , H 2 , H 3 , the contour-based

rue positive TP C as well as by the region-based measures: accu-

acy, sensitivity, specificity, and the Jaccard index. 

In order to prove the efficiency of the ESM, we apply the re-

ent Adaptive Diffusion Flow (ADF) [11] , which has been proven to

e superior to GVF [2] , GGVF [3] , Normal Gradient Vector Flow [6] ,

nfinity Laplacian GVF [7] , Harmonic Gradient Vector Flow [8] and

onvolution Vector Flow [9] . We also apply DRLSE [46,47] which

as shown its superior performance with regard to the conven-

ional methods [45] . 

Fig. 5 is an introductory example, comparing the initialization

nd the resulting contours produced by the ESM, QAI, PIG using

he ADF snakes, and DRLSE. 

Tables 3–8 show a numerical comparison of the ESM with the

bove initialization methods performed on 180 US images of ma-

ignant tumors, cysts, and fibroadenomas. Since FFS and CoD failed

ith 0% correctly segmented tumors, we do not show their results.

he tables reveal that the ESM leads practically in every category,

ith 100% correctly initialized and 100% correctly segmented im-

ges. PIG and QAI show good results for fibroadenoma images, but

an not resolve cysts and malignant tumors. In many cases a part

f the QAI initial contour is outside tumor ( Fig. 5 (f) (g), (n), (o)).

his leads to incorrect segmentations. PIG often provides good ini-

ializations. Up to 85% of PIG contours are inside the object. How-

ver, the method requires a tracing procedure to find the candidate

ontours. The procedure often wrongly includes a strong edge out-

ide the tumor located close to the actual boundary. In this case,
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Fig. 4. Examples of the test images and their computerized segmentation: (a) malignant tumor (a ′ ) – segmentation, (b) fibroadenoma, (b ′ )- segmentation, (c) cyst, (c ′ )- 
segmentation. 

Table 3 

Comparison of the ESM with initialization methods for images of cysts, segmentation method- AC/ADF. 

Model Correctly initialized, N corr % Correctly segmented, S corr % Average accuracy 

Contour-based measures Region-based measures 

H 1 H 2 H 3 TP C SEN SPE ACC J 

ESM/AC 100 100 5.46 2.59 2.57 92.78 97.07 99.61 99.20 0.99 

QAI/AC 85 50 21.21 9.34 8.27 71.27 90.93 97.85 96.43 0.97 

PIG/AC 65 80 15.76 5.74 5.23 80.14 84.45 97.94 86.55 0.97 

Table 4 

Comparison of the ESM with initialization methods for images of cysts, segmentation method-L SM/DRL SE. 

Model Correctly initialized, N corr % Correctly segmented, S corr % Average accuracy 

Contour-based measures Region-based measures 

H 1 H 2 H 3 TP C SEN SPE ACC J 

ESM/LSM 100 100 5.18 2.05 1.85 93.81 97.06 99.65 99.23 0.99 

QAI/LSM 85 70 16.23 3.65 3.30 68.45 96.22 96.74 97.08 0.96 

PIG/LSM 65 65 21.77 8.06 7.18 65.35 78.86 95.91 91.30 0.90 

Table 5 

Comparison of the ESM with initialization methods, images for malignant tumors, segmentation method AC/ADF. 

Model Correctly initialized, N corr % Correctly segmented, S corr % Average accuracy 

Contour-based measures Region-based measures 

H 1 H 2 H 3 TP C SEN SPE ACC J 

ESM/AC 100 100 6.24 0.96 1.10 91.89 97.19 98.79 98.33 0.97 

QAI/AC 87 50 27.83 5.88 5.25 56.71 81.49 96.19 92.60 0.90 

PIG/AC 73 53 23.20 5.35 4.97 67.07 91.50 95.84 95.05 0.93 
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the segmentation method can not move the contour further to the

actual boundary ( Fig. 5 (h),(i), (p),(q)). Knowing that the seed is in-

side the tumor is a great advantage of ESM, leading to 100% cor-

rectly segmented images and a better segmentation accuracy. 

For instance, in terms of dis t H 3 , the average accuracy of the

ESM/AC on malignant tumors is 1.1 pixels versus 5.25 for QAI and

4.97 for PIG. The ESM/LSM provides slightly better results-1.02 vs.

3.57 for QAI and 7.26 for PIG. Note that TS produces approxi-

mately the same initialization results as the ESM. However, the

TS model is extremely slow. Our numerical experiments show that

the ESM is approximately 10 times faster. Interestingly, the combi-

nation ESM/LSM always produces a better accuracy, as compared

with the ESM/AC. As far as the different types of tumors are con-

b  
erned, ESM/LSM is the best for the malignant tumors in terms of

is t H 3 and the best for fibroadenomas, in terms of dis t H 2 . However,

he best region based accuracy ESM/LSM shows for the images of

ysts. In summary, if we award one point for the best segmenta-

ion accuracy in each category, the absolute winner is ESM/LSM. 

. Conclusions 

The proposed new automatic procedure for initialization of ac-

ive contours for segmentation of ultrasound images of breast can-

er outperforms preceding algorithms. In terms of the accuracy, the

SM is better than QAI, CoD, FFS, and PIG methods, and is com-

arable with TS. However, the particles are faster than TS. This is

ecause TS may get stacked between the edges or inside the cav-
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(a) Original US Image (b) Ground Truth (c) Inner and outer seeds

(d) ESM initialization (e) ESM/ADF-result (f) QAI initialization

(g) QAI/ADF result (h) PIG-initialization (i) PIG/ADF result 

(j) the original US image as a 
surface

(k)  ground truth on the image 
surface

(l) ESM initialization

(m) ESM/LSM result (n) QAI initialization (o) QAI/LSM result

(p) PIG-initialization (q) PIG/LSM result

Fig. 5. (a)–(i) the initialization methods combined with the AC, (j)-(q) the initialization methods combined with the LSM. 

Table 6 

Comparison of the ESM with the initialization methods for images of malignant tumors, segmentation method- L SM/DRL SE. 

Model Correctly initialized, N corr % Correctly segmented, S corr % Average accuracy 

Contour-based measures Region-based measures 

H 1 H 2 H 3 TP C SEN SPE ACC J 

ESM/LSM 100 100 5.56 0.90 1.02 91.95 96.64 98.96 98.34 0.97 

QAI/LSM 87 80 17.45 3.30 3.57 67.98 94.45 96.52 96.43 0.95 

PIG/LSM 73 50 26.52 7.39 7.26 53.05 93.11 93.67 93.85 0.91 
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Table 7 

Comparison of the ESM with initialization methods for images of fibroadenoma, segmentation method- AC/ADF. 

Model Correctly initialized, N corr % Correctly segmented, S corr % Average accuracy 

Contour-based measures Region-based measures 

H 1 H 2 H 3 TP C SEN SPE ACC J 

ESM/AC 100 100 5.13 1.32 1.92 92.81 98.27 98.56 98.80 0.99 

QAI/AC 100 90 6.87 1.76 2.51 89.36 97.58 99.19 98.37 0.98 

PIG/AC 80 80 15.40 4.59 4.23 78.71 87.42 97.37 96.13 0.94 

Table 8 

Comparison of the ESM with the initialization methods on images of fibroadenoma, segmentation method- L SM/DRL SE. 

Model Correctly initialized, N corr % Correctly segmented, S corr % Average accuracy 

Contour-based measures Region-based measures 

H 1 H 2 H 3 TP C SEN SPE ACC J 

ESM/LSM 100 100 4.73 0.82 1.17 93.02 98.75 98.94 98.93 0.99 

QAI/LSM 100 90 6.71 1.17 1.65 89.94 97.71 99.11 98.78 0.98 

PIG/LSM 80 80 16.58 5.00 4.83 76.43 87.02 96.82 95.79 0.94 

Table 9 

Efficiency, the ESM vs. conventional methods. 

Model Initialization time Correctly initialized N corr , % Segmentation method 

ADF/GGVF LSM 

ESM fast (2–4 s) excellent (100) fast 1.25–2.0 s fast 2.0–2.5 s 

TS very slow (60–90 s) excellent (96.7) 

QAI slow (15–23 s) good (90.6) 

PIG very fast (0.5–0.8 s) medium (72) 

CoD very fast (1–2 s) very poor (0) 

FFS very fast (1–2 s) very poor (0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ities. As far as QAI, CoD, FFS, and PIG are concerned, their weak-

ness is that they analyze the vector fields which can be irregu-

lar and chaotic. As opposed to that, the ESM uses the vector field

only when it generates the seeds. Further, the algorithm is based

on the edge map information. Table 9 presents a summary of the

numerical experiments. The ESM is the fastest and the most ac-

curate method. Although the LSM is slightly slower than ADF, the

most suitable combination is ESM/LSM. 
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